

XENON

Search for new physics with XENONnT

Carla NOW C

DSFC Dipartimento di Scienze Fisiche e Chimiche

Carla Macolino

NOW Conference 2022 10.09.22

XENON Collaboration Meeting, July 2022, Torino

Search for new physics with XENONnT

XENON10 2005-2007

XENON100 2008-2016

XENON1T 2012-2018

XENONnT 2019-2025

Sensitivity improvement

All the detectors of the XENON project located in the Gran Sasso laboratories

1.4 km rock coverage (3800 m w.e.) 1e6 muon flux reduction

NEW RADON REMOVA SYSTEM

ER background reduction

Dedicated Rn cryogenic distillation column 1 µBq/kg ²²²Rn level (goal) In XENON1T was 13 µBq/kg (science run) 4.5 µBq/kg (latest R&D run)

Large Xe flows using Rn-free compressors and heat exchangers

Rn contamination in first SR is 1.7 µBq/kg 🎼

Will be reduced to <1 μ Bq/kg in next science

arXiv:2205.11492

X

XE

×8

Upgrades for X

Tag neutrons which contribute to background in WIMP search

Gd-loaded Water: 0.2% of Gd in mass -> 3.4 t of Gd-sulphate-octahydrate; (technology from EGADS-SK colleagues)

Water cherenkov detector around cryostat with 120 8" PMTs inside an enclosure of reflective panels

Science Run 0 running with pure water, tagging efficiency was 68%

Gd -doping to increase performances (85% efficiency with 0.2% Gd)

Search for new physics with XENONnT

The neutron veto

XENONnT: Science Run 0

Gain stable at 3% All PMTs working except 17 23 V/cm drift field

2.9 kV/cm extraction field

Hot-spots:sporadic ramp-downs of the anode, due to localized, high-rate, bursts of electrons (hot-spots)

Search for new physics with XENONnT

97.1 livetime days (from July 6, 2021 to November 10, 2021)

----10

2 calibration sources for Electro Recoils: G7Ar and 220Rn

37Ar: mono-energe ev to set the low-er and resolution mode

220Rn: 212Pb from 222R flat **B**-spectrum to estin acceptances and valida threshold

For ER sources the entire deposited energy is given by the observable

light and charge
$$E = 13.7 \text{ eV} \left(\frac{cS1}{g_1} + \frac{cS2}{g_2} \right)$$

Mono-energetic peaks between 1 and 140 keV from ³⁷Ar, ^{83m}Kr, ^{129m}Xe and ^{131m}Xe

Observed bias in energies between 1-2% included in the modelling Stability monitored during SR0 from calibration sources, ²²²Rn a's and materials' y's

Search for new physics with XENONnT

XENONnT: Tritium Enh

Significant effort to reduce possible sources of a low-energy excess as due to Tritium in XENONnT:

- $\bullet\, TPC$ outgassed for ~3 months before filling GXe to reduce HTO/HT
- Initial HT was considerably reduced when the entire xenon inventory was processed through the Kr-removal system
- Xenon was transferred to the liquid storage system via high temperature getters with hydrogen removal unit (HRU) before filling
- Prior to cool down and filling, the cryostat and TPC were treated by continuously circulating GXe for ~3 weeks
- GXe or LXe was always purified via the getters when filled into the cryostat
- HRUs were regenerated before SR0

TED: after Science Run 0, the detector was operating bypassing the getters for the gaseous Xe purification during 14.3 days

This enhanced the H2/HT concentration in Liquid Xenon by a factor 10-100

The TED was blinded and after unblinding no tritium-like excess was found

Search for new physics with XENONnT

yous with different stages of unblinding

Energy range (1-140) keV

Fiducial mass (4.37±0.14) t Exposure is 1.16 t*y

²²²Rn: ~ 1.7 μBq/kg (XENON1T SR1: ~ 12 μBq/kg) ^{nat}Kr: (56 ± 36) ppq (XENON1T SR1: (660 ± 110) ppq) ^{83m}Kr background is due to leftover of calibrations

Spectral shape dominated by two double-weak decays: ¹³⁶Xe $2v\beta\beta$ and ¹²⁴Xe 2vECEC

¹²⁴Xe 2vECEC the rarest decay ever observed in XENON1T, now also used as a validation of the energy reconstruction

XENONnT: 37Ar

Why not include ³⁷Ar in the background model? ³⁷Ar leak during the SR0 operation is not possible since:

Cosmogenic activation is excluded

-Xenon detector has been underground for years -Before SR0 data taking the entire xenon inventory has been distilled by the Krypton removal system (XENON Collaboration, PTEP 2022, 053H01)

Leak is excluded

-natKr variation allows only very small leak to be possible -only very small leak is possible when comparing ³⁷Ar activity in the lab air

Search for new physics with XENONnT

LZ background: ³⁷Ar is observed due to cosmogenic activation during transportation above ground (short half-life: 35 days)

XENONnT: Unblinding

Unblinded ER region only

²¹⁴Pb best-fit rate: (1.36 \pm 0.17stat) µBq/kg

Solar neutrino: the 2nd largest ER background belov

the lowest background ever achieved in a dark n g XENON1T ER search)!

20 25

XENONnT: Solar axions

XENONnT compatible with background-only hypothesis Axion signal assumes axio-electric effect and reverse Primakoff effect

Best direct detection limit of g_{ae} for axion mass below 100 eV/c2 **Best direct detection limit** of $g_{a\gamma}$ for axion mass between 1 and 100 eV/c2 90% upper limit on 14.4 keV peak from ⁵⁷Fe solar axion component is 20.4 events/(t yr)

C. Macolino (UnivAQ and INFN)

20

No limit/sensitivity between (39, 44) keV/c2 because ^{83m}Kr background rate is not constrained **Competitive limits** for mass in (1, 39) keV/c and (33, 140) keV/c Maximum local significance ~1.8 σ at ~109 keV

Search for new physics with XENONnT

XENONnT: Neutrin

Massive neutrinos imply a not null magnetic moment – if new physics raises this magnetic moment, it may cause an enhanced neutrino scattering rate

Constraint on neutrino magnetic moment Upper limit at $\mu v < 6.3*10-12 \mu B$

The most stringent limit in any direct detection experiment

Search for new physics with XENONnT

²¹⁴Xe 2vECEC recognizable in the energy spectrum due to the **ultra-low background**: LL peak visible even with only ~1% BR

KL & KK peaks used for calibration purpose (energy resolution) The measured half-life $T_{2vECEC} = (1.15 \pm 0.13 \pm 0.14) \times 10^{22}$ yr with a significance of 10σ Consistent with the previous XENON1T result, $T_{2vECEC} = (1.1 \pm 0.2 \pm 0.1) \times 10^{22}$ yr [XENON Collaboration, Phys. Rev. C 106, 024328]

Search for new physics with XENONnT

XENONnT: Conclusions from SR0 ER search

XENONnT performances in SR0: >10 ms electron lifetime and (1.77 +- 0.01) μ Bq/kg radon concentration

Exposure 1.16 tonne years (2x XENON1T) Lowest ER background ever achieved in a DM experiment (0.2x XENON1T): (16.1 + - 0.3) evts/(t yr keV)

No evidence of ³H, even in the TED

Search for new physics in ER data: best fit signal strength 0, XENON1T peak rejected at 8.6 σ

Exclusion of XENON1T excess: measurement incompatible at $\sim 4\sigma$ No evidence of ³H, even in the TED

Most likely explanation of XENON1T excess is a small ³H contamination Big effort in XENONnT to reduce tritium outgassing

Competitive limits on several new physics models

Search for new physics with XENONnT

arXiv: 2207.11330

Unblinding Nuclear Recoil data soon for WIMP search

A second science run (SR1) with factor 2 lower radon level is ongoing

Search for new physics with XENONnT

Follow us at:

XENON PR Team: <u>xenon-pr@lngs.infn.it</u>

The future: XLZD consortium

 Consortium between XENON/DARWIN and LUX-Zeplin (LZ) established on July 2022

Dark Matter direct detection with DARWIN

T.J. Anderson,^{1,2} B. Andrieu,⁷ N. Angelides,¹⁶ E. Angelino,¹⁷ J. Angevaare,¹⁸ V.C. Antochi,¹⁹ D. Antón Martin,²⁰ B. Antunovic,^{21,22} E. Aprile,²³ H.M. Araújo,¹⁶ J.E. Armstrong,²⁴ F. Arneodo,²⁵ M. Arthurs,¹⁴ P. Asadi,²⁶ S. Baek,²⁷ X. Bai,²⁸ D. Bajpai,²⁹ A. Baker,¹⁶ J. Balajthy,³⁰ S. Balashov,³¹ M. Balzer,³² A. Bandyopadhyay,³³ J. Bang,³⁴ E. Barberio,³⁵ J.W. Bargemann,³⁶ L. Baudis,⁵ D. Bauer,¹⁶ D. Baur,³⁷ A. Baxter,³⁸ A.L. Baxter,⁹ M. Bazyk,³⁹ K. Beattie,⁴⁰ J. Behrens,⁴¹ N.F. Bell,³⁵ L. Bellagamba,⁶ P. Beltrame,⁴² M. Benabderrahmane,²⁵ E.P. Bernard,^{43,40} G.F. Bertone,¹⁸ P. Bhattacharjee,⁴⁴ A. Bhatti,²⁴ A. Biekert,^{43,40} T.P. Biesiadzinski,^{1,2} A.R. Binau,⁹ R. Biondi,⁴⁵ Y. Biondi,⁵ H.J. Birch,¹⁴ F. Bishara,⁴⁶ A. Bismark,⁵ C. Blanco,^{47,19} G.M. Blockinger,⁴⁸ E. Bodnia,³⁶ C. Boehm,⁴⁹ A.I. Bolozdynya,⁸ P.D. Bolton,¹¹ S. Bottaro,^{50, 51} C. Bourgeois,⁵² B. Boxer,³⁰ P. Brás,⁵³ 2022 A. Breskin,⁵⁴ P.A. Breur,¹⁸ C.A.J. Brew,³¹ J. Brod,⁵⁵ E. Brookes,¹⁸ A. Brown,³⁷ E. Brown,⁵⁶ S. Bruenner,¹⁸ G. Bruno,³⁹ R. Budnik,⁵⁴ T.K. Bui,⁴ S. Burdin,³⁸ S. Buse,⁵ J.K. Busenitz,²⁹ D. Buttazzo,⁵¹ M. Buuck,^{1,2} A. Buzulutskov,^{57, 58} R. Cabrita,⁵³ C. Cai,⁵⁹ D. Cai,³⁹ C. Capelli,⁵ J.M.R. Cardoso,¹⁵ M.C. Carmona-Benitez,⁶⁰ M. Cascella,¹¹ R. Catena,⁶¹ S. Chakraborty,⁶² C. Chan,³⁴ S. Chang,⁶³ A. Chauvin,⁶⁴ A. Chawla,⁶⁵ H. Chen,⁴⁰ 5 V. Chepel,⁵³ N.I. Chott,²⁸ D. Cichon,⁶⁶ A. Cimental Chavez,⁵ B. Cimmino,⁶⁷ M. Clark,⁹ R.T. Co,⁶⁸ A.P. Colijn,¹⁸ Z J. Conrad,¹⁹ M.V. Converse,⁶⁹ M. Costa,^{50, 51} A. Cottle,^{10, 70} G. Cox,⁶⁰ O. Creaner,⁷¹ J.J. Cuenca Garcia,⁴¹ \rightarrow J.P. Cussonneau,³⁹ J.E. Cutter,³⁰ C.E. Dahl,^{72,70} V. D'Andrea,⁷³ A. David,¹¹ M.P. Decowski,¹⁸ J.B. Dent,⁷⁴

C. Macolino (UnivAQ and INFN)

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics J. Aalbers,^{1, 2} K. Abe,^{3, 4} V. Aerne,⁵ F. Agostini,⁶ S. Ahmed Maouloud,⁷ D.S. Akerib,^{1, 2} D.Yu. Akimov,⁸ J. Akshat,⁹ A.K. Al Musalhi,¹⁰ F. Alder,¹¹ S.K. Alsum,¹² L. Althueser,¹³ C.S. Amarasinghe,¹⁴ F.D. Amaro,¹⁵ A. Ames,^{1, 2}