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Motivations

e Entanglement as an intrinsic property of neutrinos®;
e Recent interest in the study of quantumness of neutrino oscillations
(entanglement, Leggett-Garg inequalities’, quantum coherence,

quantum correlations);

e Neutrinos as a resource for quantum information;

*M.B. et al., Phys. Rev. D (2008); EPL (2009).

For an early review on entanglement in particle physics see R.A.Bertlmann,
Lect.Not.Phys.(2006).

tJ.A. Formaggio et al., Phys. Rev. Lett. (2016).



Motivations

e Access fundamental properties of (elementary) particles via

quantum correlationsi;

e Necessity for a treatment of entanglement in the context of
Quantum Field Theory$;

e Neutrino mixing and oscillations in Quantum Field Theory.

tFor the case of K9K© system, see A.Di Domenico, 2208.06789 [hep-ph].
$M.O.Terra Cunha, J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007).
IM.B and G.Vitiello, Ann. Phys. (1995)



Entanglement in neutrino mixing &

oscillations



Entanglement in neutrino mixing]!

— Flavor mixing (neutrinos)
|ve) = cosOlv) + sinf |ve)
|v,) = —siné |v1) + cosf |vo)
e Correspondence with two-qubit states:

lv1) = [1)110)2 = [10), lv2) = (0)1[1)2 = [01),

[); denotes states in the Hilbert space for neutrinos with mass m;.

= flavor states are entangled superpositions of the mass eigenstates:

|ve) = cos@|10) + sinf|01).

I'F.Dell’ Anno, S.De Siena and F.Illuminati, EPL (2009).
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Composite structure of Hilbert space for neutrinos

e Necessity of tensor-product structure of Hilbert space for two
generations:

Orthogonality of Hilbert spaces for fields with different masses**
Example: two scalar fields with different masses
O+ p)pr(z) =0 (O + p3)¢2(x) = 0

with boundary conditions ¢;(0,x) = ¢2(0,x) and ¢, (0,x) = ¢2(0,x)

Voo (i - ps)?
1<O|0>2_6Xp{_647r2/0 dk 2

which vanishes in the infinite volume limit.

One obtains

**G.Barton, Introduction to Advanced Field Theory, Intersc. Publ. (1963)
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Entanglement - mathematical definition

e Given a bipartite system H = H4 ® Hp, a system is entangled, iff

A B
PAB F Zpk Pé., ) ®p,(f, )
k
with0<p;, <1, > . px=1

e For a generic pure state of the form:

[Wyas = > _cijli)a®|i)s

j
the condition for entanglement reads

V) aB # |6)a @ |[X)B
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Single-particle entanglement*

o A state like |¢) 4 5 = |0)4]1) B + |1) 4]0) 5 is entangled,;
— entanglement among field modes, rather than particles;

— entanglement is a property of composite systems, rather than of
many-particle systems;

— entanglement and non-locality are not synonyms;

— single-particle entanglement is as good as two-particle entanglement
for applications (quantum cryptography, teleportation, violation of
Bell inequalities, etc..).

*J.van Enk, Phys. Rev. A (2005), (2006);
J.A.Dunningham and V.Vedral, Phys. Rev. Lett. (2007).
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Protocols for extraction of single-particle entanglement

Q
$»

One photon is split, creating an
entangled one-photon state.

Q
\> —

Each photon mode interacts with a
two-level atom. Resonance is
tuned to give a 7 pulse, if a photon
is present. The excitation is
transferred to the atomic pair.

One excitation is distributed
between two atoms. A Bell state of
excited-ground states is created.

one-particle
entanglement

state transfer

two-particle
entanglement

\ome/

One atom is split between two
traps, creating an entangled one-
atom state.

N e

Each atomic trap interacts with an
attenuated atomic beam.
Resonance is tuned to create a
molecule if one atom is found in
the trap. The traps are left empty,
and the atom is transferred to the
beams.

N N
o /'l' .

The (dark grey) trapped atom is
distributed between two (light grey)
atomic beams. A Bell state of
molecule—atom states is created.

fM.O.Terra Cunha, J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007)
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Multipartite entanglement in neutrino mixing?

— Neutrino mixing (three flavors):
) = U0,0)v,)

with |vg) = (|ve), ), [v-)" and |v,,) = (1), |v2), [vs) "
— Mixing matrix (PMNS)

—id
C12€13 S12€C13 S13¢€
) _ i i
u@,o) = —S12C23 — C12523513€¢"°  C12C23 — S12823513€" $23C13 ;
i8 i5
§12823 — €C12C€23513€ —C12523 — S12€23513€ C23C13

where (6,6) = (012,613, 023;0), cij = cos0;; and s;; = sin 0.

e Correspondence with three-qubit states:

[v1) = [1)110)2/0)5 = [100), [v2) = [0)1]1)2(|0)5 = [010),

lv3) = [0)1]0)2[1)s = |001)

fM.B., F.Dell’Anno, S De Slend M.Di Mauro and F.Illuminati, PRD (2008).
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(Flavor) Entanglement in neutrino oscillations®

— Two-flavor neutrino states

) = 0.6 1™

where [vF) = (|ve), |v,))" and [1™) = (J11), |2))” and

cos sin 6
ul) = .
©) —sinf  cos6

— Flavor states at time t:

WD) = UB,8) Ug(t) U0, 86) " v = fj(t)|2<f)>7

—iEqt
with U (t) = ( ¢ . e*?Eﬁ )

$M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2009).
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— Transition probability for v, — v

Py () = [Wslva(®)® = [Tap(t)]*.

e We now take the flavor states at initial time as our qubits:

e) = 1)el0) = [10)5,  [vu) = 0)e[1), = [01),

e Starting from |10); or |01), time evolution generates the
(entangled) Bell-like states:

Va)) = Uac(®)|1)el0)y + Tap()0)e|1), o= e, .
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Entanglement measure: linear entropy

eLet p = [¢¥) (1] be the density operator for a pure state |¢)

Bipartition of the N-partite system S = {S1, S2,...,Sn} in two subsystems
San, SBy_,

e Reduced density matrix of S4, after tracing over Sg, _,,:
PA, = Pirjinyin = LTBy_, [p] = T,’)jl)ij“'tjf\"fn [P]

e Linear entropy associated to such a bipartition:

AniBN_n d
Sy '(p) = ﬁ(l —Tra,lph,]),

d is the Hilbert-space dimension.

lement in neutrino mixi




Entanglement measures

It is necessary to distinguish the various entanglement measures for
pure and mixed states (which may contain classical correlations).

e Measures for pure states:
- von Neumann entropy

- Geometric Entanglement

e Measures for mixed states:

- Entanglement of Formation and Concurrence
- Logarithmic negativity

- Relative Entropy of Entanglement

glement in neutrino mixing & oscillations




Entanglement in neutrino oscillations: two-flavors

Consider the density matrix for the electron neutrino state

' = |ve(t))(ve(t)|, and trace over mode u = Pt

e The associated linear entropy is :

wa)(p(e)) =4 |I~Jeu(t)|2 |ﬁ€e(t)|2 = 4PV5%1/6 (t) PVQHV# (t)

The linear entropy for the state p(®) is:

S = 595 = 41U (O [Uae(t)?

4‘6ue(t)‘2 (1 - |ﬁae(t)|2)

= 4‘6uu(t)|2 (1 - ‘INJ(”L(Y‘/)F).

e Linear entropy given by product of transition probabilities

Entanglement in neutrino mix
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Other results

e Generalization to three flavors. Extension to wave packets;*
e Flavor entanglement in Quantum Field Theory.*

e v—oscillations as a resource for quantum information - Experimental
scheme for the transfer of the flavor entanglement of a neutrino beam
into a single-particle system with spatially separated modes.

“M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2015).
"M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2014).
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Quantum correlations &
nonlocality in neutrino

oscillations



Quantum Correlations

Quantum systems exhibit properties that are beyond our
understanding of reality. They show correlations that have no
classical counterpart.

Entanglement is the most known of these correlations. But the

terminology quantum correlations refers to a broader concept:

e Quantum correlations related to entanglement:

- Bell non-locality
- Entanglement
- Quantum steering

¢ Quantum correlations beyond entanglement:

- Quantum discord

Quantum correlations & nonlocality in neutrino oscil




. +
Quantum Correlations*

Bell non-locality

Quantum Steering

Entanglement

Quantum Discord

Hierarchy of quantum correlations

£@. Adesso, T.R. Bromley and M. Cianciaruso, J. Phys. A (2016)
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Quantum correlations in neutrino oscillations

e Recently, quantum correlations have been investigated in the
context of high-energy particle physics;

Focus on neutrinos and mesons, which are candidates for quantum

information applications beyond photons.

Quantum correlations in neutrino oscillations (partial list):

A.K. Alok et al., Quantum correlations in terms of neutrino oscillation
probabilities Nuc. Phys. B (2016)

J.A. Formaggio et al., Violation of the Leggett- Garg Inequality in Neutrino
Oscillation Phys. Rev. Lett. (2016).

X.-S. Song et al. Quantifying quantum coherence in experimentally observed
neutrino oscillations Phys. Rev. A (2018)

J.Naikoo et al. Leggett-Garg inequality in the context of three flavor
neutrino oscillation Phys. Rev. D (2019)
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K. Dixit et al., Study of coherence and mizedness in meson and neutrino
systems Eur. Phys. J. C (2019)

F. Ming et al. Quantification of quantumness in neutrino oscillations Eur.
Phys. J. C (2020)

L.-J. Li et al. Characterizing entanglement and measurement’s uncertainty
in neutrino oscillations Eur. Phys. J. C (2021)

P.Kurashvili et al Coherence and mizedness of neutrino oscillations in a
magnetic field Eur. Phys. J. C (2021)

S.Shafaq and P.Mehta Enhanced violation of Leggett—Garg inequality in

three flavour neutrino oscillations via non-standard interactions J.Phys.G
(2021)

K.Dixit, A.K.Alok New physics effects on quantum coherence in neutrino
oscillations Eur. Phys. J. P (2021)
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A .K.Jha, S.Mukherjee, B.A.Bambah Tri-partite entanglement in neutrino
oscillations Mod. Phys. Lett. A (2021)

A.K.Jha, A. Chatla Quantum studies of neutrinos on IBMQ processors
Eur. Phys. J. S. T.(2022)

B. Yadav, T.Sarkar, K.Dixit, A.K.Alok Can NSI affect non-local
correlations in neutrino oscillations? Eur. Phys. J. C (2022)

Z. Askaripour Ravari et al. Quantum coherence in neutrino oscillation in
matter Eur. Phys. J. P (2022)

Y.W.Li et al. Genuine tripartite entanglement in three-flavor neutrino
oscillations arXiv preprint arXiv:2205.11058, 2022

A.K.Jha, A.Chatla, B.A.Bambah Neutrinos as Qubits and Qutrits
arXiv:2203.13485 (2022)
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M.B., S.De Siena and C.Matrella, Wave packet approach to quantum
correlations in neutrino oscillations, Eur. Phys. J. C (2021)

M.B., S.De Siena and C.Matrella, Complete complementarity relations for
quantum correlations in neutrino oscillations, Eur. Phys. J. C (2022)

M.B., F.llluminati, L.Petruzziello and L.Smaldone, Leggett-Garg
inequalities in the quantum field theory of neutrino oscillations, arXiv
preprint arXiv:2111.09979

M.B., S.De Siena and C.Matrella, Nonlocality and entropic uncertainty
relations in neutrino oscillations, arXiv preprint arXiv:2206.13218
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Non-local Advantage of Quantum Coherencef

e A state is said to be coherent provided that there are non-zero

non-diagonal elements in its matrix representation.

Coherence can be quantified by means of the /1-norm of coherence:*

Cl1 (p) = Z |p177|

i

If the qubit is prepared in either spin up or down state along z, it is
incoherent in z-basis (C}; = 0) and fully coherent in x- and y-basis
(€ =1).

Upper bound beyond which the effects of non-locality emerge:

Z Cfl(p) S Cmaw-

1=x,Y,2

“T.Baumgratz, M.Cramer and M.B.Plenio, Phys. Rev. Lett. (2014).
fD. Mondal, T. Pramanik, A.K. Pati, Phys. Rev. A (2017).
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Non-local Advantage of Quantum Coherence

Consider a bipartite system made of two spatially separated subsystems.
Alice performs a measurement I on o; eigenbasis with outcome b = {0,1}
and probability py» = Tr[(T1° ® 1)paz].

Measured state for the two-qubit state isp ,p v = (M ®1)pap(lE®@1)/p
and the conditional state for qubit B is pp e = Tra(pspme)-

Then Alice tells Bob her measurement choice and Bob has to measure the
coherence of qubit B at random in the eigenbases of the other two Pauli

matrices o; and oy.

If the above condition for locality is violated then we cannot have a

single-system description of the coherence of subsytem B.

The criterion for achieving a NAQC of qubit B can be written as:

Ni, (pas) ZP meb I1 (PB|1‘[_’;¢1) > V6.

LJb
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Quantification of quantumness in neutrino oscillations

° Recentlyi, quantumness in neutrino oscillations has been quantified
through correlation measures such as Non-local Advantage of Quantum
Coherence (NAQC), quantum steering and Bell non-locality.

— The criterion for NAQC is:

N"(pap) = Zp pit, ) (P, ) > V6.

i,7,b
— Bell non-locality (violation of CHSH inequality):

B(pas) = [{(Bcusu)| < 2.

— Quantum steering;:

n

1
Fr(paB,s) = % ZTT’(pABAi ® B)|<1
i=1

. Ming, X-K. Song, D. Wang, Eur. Phys. J. C (2020)
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Quantumness in

neutrino oscillations (Daya Bay) ®
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Quantumness in neutrino oscillations (MINOS) 1

3.15

2.70

225

a b (
(a) 10, 139
{ f if
z 15
ANE E
...................... £ 24 =
G ERP)
Theory 20 li B Theony 3 09 I Theory
...... NAQC-limit 18 Nt 2 Steering-limit
« MINOS : . MINOS * MINOS
> 3 5 - 0.6 -
10' 10 10° 10' 10° 10° 10' 10° 10
L/E(km/GeV) L/E(km/GeV) L/E(km/GeV)

——NAQC
081 Bell nonlocality
Steering

Quantum-Measure

e MINOS: sin? 2653 = 0.95 and
Am3, = 2.32 x 107 3eV2.

e The NAQC is a stronger nonclassical

correlation than Bell non-locality and

10' 10°
L/E(km/GeV)

quantum steering.

1F. Ming, X-K. Song, D. Wang, Eur. Phys. J., (2020)
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NAQC & Bell nonlocality in the wave packet approach**

e We have extended the studies on quantumness of neutrino
oscillations through NAQC using the wave packet approach. |

Neutrino with definite flavor:

|va(z,t)) ZUMz/;] (z,t)|v5)

where: .
Vi(z,t) = —— d . eipzfiEj(p)t
i) = == [ dp (0
with: 5
1 .
0y(p) = (2n0f”) Fexp —E—L2L
4ol

Ic. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics,

Oxford University Press (2007)
**M.B., S. De Siena and C. Matrella, Eur. Phys. J. C (2021)
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Wave packet description of neutrino oscillations

Assume the condition o, < E3(p;)/m;. Then we have:
Ej(p) ~ Ej +v;(p — pj)

Integrating on p, one gets the wave packet in coordinate space:

(z — Ujf)2]

P2
4U:v

P2

_1
¥ (z,t) = (270, ) *exp |:_7:Ejt +ipjx —

Write density matrix operator pa(z,t) = |va(z,t))(va(z,t)|. After time
integration, one gets the oscillation formula in space

* * . L L 2 p x 2
Paﬁ (L) = Z U4Yj U‘)’kUﬁj Uﬁk exp |:727TZ L().Z(: - (L(:oh,) 7271—2(1 - 5)2 (LO(—)IZ() :|
Jk Jjk Jk

gk
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NAQC in the wave packet approach (Daya Bay)
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NAQC in the wave packet approach (MINOS)
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Results and perspectives

e Our treatment based on wave packets leads to a better agreement
with experimental data in the case of MINOS.*

e NAQC has a different long-distance behaviour for the two
experiments, due to the different values of the mixing angle.

e Existence of a “critical” angle for which NAQC exceeds the bound.

“M.B., S. De Siena and C. Matrella, Eur. Phys. J. C (2021)
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oscillations



Complete Complementarity Relations

To better understand the above results, we resort to the recently
introduced concept of CCR.

e N.Bohr (1928): complementarity principle

o W.K.Wootters and W.H.Zurek, Complementarity in the double-slit
experiment: quantum nonseparability and a quantitative statement of Bohr’s
principle, Phys. Rev. D (1979)

e M.Jakob and J.A.Bergou, Quantitative complementarity relations in
bipartite systems: entanglement as a physical reality, Opt. Comm. (2010)

e M.L.W.Basso and J.Magziero, Complete complementarity relations for
multipartite pure states, J. Phys. A (2020)

Complet



N.Bohr (1928)": Complementarity Principle

e Complementarity: a quantum system may possess properties which
are equally real but mutually exclusive.

It is often associated with wave-particle duality, the complementarity
aspect between propagation and detection.

In the double-slit interferometer, the wave aspect is characterized by
the interference fringes visibility, while the particle nature is given by
the which-way information of the path along the interferometer.

TN. Bohr, The quantum postulate and the recent development of atomic theory,
Nature (1928)

Complet



Double-slit

Usual view on complementarity: The complete knowledge of the path
destroys the interference pattern visibility and vice-versa.

Complet




Quantitative wave-particle duality

e Wootters and Zurek *: first quantitative version of the wave-particle
duality. A path-detecting device can give incomplete which-way
information and a sharply interference pattern can still be retained.

Their work was then extended and formulated in terms of a
complementarity relation?

P?+V2<1
where P is the predictability and V is the visibility.

e A “quanton”! may behave partially as a wave or as a particle at
the same time.

“W.K.Wootters and W.H.Zurek, Phys. Rev. D (1979)
"D.M.Greenberger and A.Yasin, Phys.Lett. A (1988); B.-G. Englert, PRL (1996).
J.-M.Lévy-Leblond, Physica (1988)

Complet



Triality relation

e For bipartite systems a complete complementarity relation (CCR)
can be obtained by including the correlations between A and B
subsystems$:

Vi+ Pl +C? =1

e Vi and Py, k = 1,2, generate local single-partite realities which
can be related to wave-particle duality.

e C is the entanglement measure concurrence which generate an

exclusive bipartite nonlocal reality.

$M.Jakob and J.A.Bergou, Opt. Comm. (2010)
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Concurrence!

The concurrence for a generic qubit system described by the density
matrix p is given by

C(p) = max{O, )\1 — )\2 — )\3 - )\4}

where the \; are the square root of the eigenvalues A\? of the operator
pp in decreasing order, with

p=(oy®@ay)p*(oy @0y)

1s. A. Hill, W. K. Wootters, Phys. Rev. Lett. (1997)
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Triality relation

Consider the most general bipartite state of two qubits:

1©) = a|00) +b[01) + ¢ |10) + d|11)

One obtains:
C= \<@|é)\ = 2|ad — bc|

Vi = 2|lac* + bd*
Vi = 2@lotjey —» 4 =2 |
Vo = 2Jab* + cd”|

] Pr=|(|c|* +|d al®* +1b
Py = |(O]c4|0)] — v = (] \2 |d|?) — (la]* + [b?)]
Py = [([b]* +[d*) = (|a* + |c]*)]

where: |0) = (0, ® 0,) |0*), of = 8 (1) , Oak = (1) f]l

The complementarity relation is satisfied, since the left hand side is just the
square norm of the general pure bipartite state |©):

(laf* + [b]* + [e]* + |d|*)* =

Complet



Examples

e Bell states (maximally entangled states)

oF = 7 (100) £ [11)), ¥F = 7 (101) £ [10))
We have C =1, Vi = Vo= P = P, =0.
e Separable state
1
1©1) = 7 (100) +101)) = \/5|0> (10) +11))

In thiscase C =0, Vi= P,=0, Vo= P, =1.

e Unbalanced state

102) = %\00)+§\11>.

= V=0, Pp= P,=1.

In this case C = l 5

=

Complet



Examples

e A separable state with all four terms

1 1
©3) = 5 (100) +|01) +[10) +[11)) = (|0} +[1))(|0) +|1))-
We have C' =0, Vi = Vo=1, Po=PFP,=0.
e Unbalanced state with all four terms
1 1 V3
O4) = —|00) + -|01) + 10) + 11
©4) = 3100) + 5101) + S 7oj10) + 2.
In this case we have C = {ﬂl, V= ‘f’\gl, Vo = \/54+27 P=0, P,= %

Complet



Complete Complementarity Relation for pure states

Alternative form of CCR for multipartite states*.
Consider a bipartite pure state in the Hilbert space H4 ® Hp:

da—1dp—1

PA,B = Z Z Pij kl |7/.7> <kl‘

i,k=0 j,1=0

If the state of subsystem A is mixed:

dg—1
da

Phs (PA) + C}Ls (/JA) <

where Prs(pa) and Chs(pa) are the predictability and the
Hilbert-Schmidt quantum coherence (generalization of the visibility').

“M.L.W.Basso and J.Maziero, J. Phys. A (2020)
"T. Qureshi, Quanta (2019).
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CCR for pure states

e The missing information about subsystem A is being shared via
correlations with the subsystem B:
dy —1

Pus(pa) + Chs(pa) + Cl(pap) = i

— Predictability
Pus(pa) = Y (0f3)* — e

— Quantum coherence (visibility)
da—1

Chs pA Z ‘pLA|2

i#k
— Non-local quantum coherence (entanglement)

l p *
Chs(paB) = Z \Pij,kz\z —2 Z §R(Pij,kjﬂiz,Jcl)
1#k,j7#l i#k,j<l

C’,’j; (pa|B) is equivalent to the linear entropy of subsystem A.
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CCR for pure states - entropic formulation

e Another form of CCR can be obtained by defining the predictability
and the coherence measures in terms of the von Neumann entropy:

Ore (PA) + Pun,(pA) + S’U’IL(pA) - 10g2 dA

where
Cre (PA) - Svn (pAdiag) - Sﬂn (PA)
PU’H,(pA) = 1()g2 dA - S’lm,(/)Adiag)
For pure states Sy, (pa) = —Tr (palog, pa) is a measure of

entanglement between A and B.

Complet



CCR for mixed states®

e For mixed states, Sy, (pa) does not quantify entanglement, but it is
just a measure of mixedness of A. CCR have to be modified:

Pyn(pa) + Cre(pa) + Ia.(paB) + Sap(pap) = logyda,
where:
o Po(pa) =Inda — Sun(padiag) is the predictability;

o Cre(pa) = Sun(padiag) — Svn(pa) is the relative entropy of
coherence;

° IA:B(/)AB) - S’UTL(/)A) + S’Un(pB) - S’UTL(/)AB) is the mutual
information of A and B;

e SqB(paB) = Sun(pas) — Sun(pp) is the conditional entropy:
It tells how much it is convenient knowing about subsystem A
with respect to the whole system.

*M.L.W.Basso and J.Maziero, EPL (2021)
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CCR for oscillating neutrinos'

e We now consider the CCR, for neutrino oscillations, both for pure
and mixed states.

Let us consider a two-flavor neutrino state:
[Va(t) = aa(t) [Va) + aap(t) ‘V/3>
We can use the following correspondence:

Vo) = |1>a ® |O>/3 = [10)
lvg) =10}, ® [1)5 = |01)

For an initial electronic neutrino, we have:

[Ve(t)) = aee [10) + ac,, [01)

TV Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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CCR for oscillating neutrinos

The corresponding density matrix is:

0 0 0 0

|0 |aep]? eeay, O
Pen = 0 aepag |aee|2 0
0 0 0 0

The state of subsystems e and p are:

o |a’(i(i|2 0 . _ ‘a‘ﬁ/‘/|2 0
Pe= 0 |aeu|2 7 P 0 |aee|2

Complet



CCR for oscillating neutrinos

We verify that the CCRs for pure states are verified in the case of
neutrino. We find:*

Phs(pe) = P2 +P2, — %
Chs(pe) = 0
Cﬁi(/’c#) = 2P.FP,,
where |ace|> = Pec, |aeu|* = Pey and Pee + Pey = 1.

Thus: ]
Py (p(z) + Chs (pc) + Clrylg (pcu) = i

as expected.

iV.BittenCourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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CCR for oscillating neutrinos

Analogously:
Pon(pe) = 1+ lace|*1ogy |ace|* + [acu|*logy Jac|”
Cre(pe) = 0
Sun(pe) = —lace|*10gy |ace|® — lac,|* log, |ac,|®

and the CCR is verified:

Pl)’ri,(ﬂe) + C’r‘fi(pe) + S’uu(pe) =1

Complet



CCR for neutrino mixed state

In a wave-packet description of neutrino oscillations, one starts with a pure
state pa(z,t) which become mixed after time integration:

z) = UarUs;i fir(@) |v;) (v,

k,j

i Amjkr Am?km 2
foule) = exp | i S — ([

where:

By considering;:
) = 3 Vailva) s 1va) = [Fae), 10an) 10ar),

we can write:

pal(z ZFﬁ ) |08e08u057) (e 0rubyr |

where:

(@) = S Ul Uk fi (2)Uny Ul

kj

Complet



CCR for neutrino mixed state

o We consider the CCR in the case of a two-flavor neutrino
oscillation, for an initial electron neutrino

Pyn(pe) + Cre(pe) + IA:B’(peu) —+ Se\u(peu) = log, de,
where:

= logy, —Sun(Pesin,)

= Son(Pegiag) — Svn(pe)

= Sun(pe) + Sun(pp) — Svn(pep)
= Sun(pep) = Son(pu)

Py (pe
Cre(pe

)
)
ITa.B(pep)

Selp(pep)

For a generic matrix p, the von Neumann entropy is defined as
Sun(p) = —>_; Ailogy Ai, where \; are the eigenvalues of p.

Complet



CCR for neutrino mixed state

The starting density matrix is:

0 0 0 O

0 FL F5 0

Pep (1‘) = 0 Fe¢ Fe 0
ne L

0 0 0 O

and the reduced density matrices are:

F 0 Fe 0
— ee ) — o
(7 2 o= (B )

By evaluating the eigenvalues of these matrices, we obtain:
R)TL (P() =1+ Fce(z 10g2 Fcec + Fﬁ/t 10g2 Fﬁu
C’r‘e (pe) =0
Ie:u(peu) + Sem(pe,u) = _Fée IOgQ Fe(e - Fﬁu 10%'2 F;ip,

By adding all the terms we find that the CCR for mixed states is
satisfied for a neutrino state.

Complet



CCR for neutrino mixed state

The sum of the non-local terms of the CCR is equal to the Quantum
Discord, defined as:

QD(pap) = I(pag) — CC(pagn),

where I(pap) is the total correlations between the subsystems A and
B; and CC(pap) quantifies the classical correlations. We have

Q@D(paB) = Swn(pa) = Swlpan) + ?ﬁllli Sen,(mity (PaB)

that, for the neutrino density matrix under consideration, gives

QD(P@“) - 7Fzze(: log2 F(iz - F/iu, logQ Fﬁ/l.

Complet



CCR for neutrino oscillations* - DAYA BAY
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(a) DAYA BAY (L € [364m,1912m)|)

Am?2, =2.42 x 107 3eV?, sin® 2013 = 0.084, E = 4MeV

*V.Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)




CCR for neutrino oscillations’ - KamLAND

3‘0 66 9‘0 1 20 1 {‘30 1é0 0 3‘0 6‘0 90 12‘0 150 1 éO
x(km) x(km)
(b) KamLAND (L =180 Km)

Amis =749 x 107%eV?, tan? 2015 = 0.47, E = 2MeV

TV Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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CCR for neutrino oscillations* - MINOS

CCR

1500
x(km) x(km)
(¢) MINOS (L =735 km)

Am3y = 2.32 x 1073eV?2, sin? 2053 = 0.95, E = 0.5GeV

¥V Bittencourt, M.B., S.De Siena and C.Matrella, Eur. Phys. J. C. (2022)
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Results and perspectives

e We have studied CCR for the oscillating neutrino systems, both in
the pure and in the mixed case.

e Complete characterization of quantum correlations in neutrino

oscillations.

e Interesting long-distance behaviour of the correlations, depending

on the mixing angle.

e To be done: Extension to three flavors, multipartite entanglement.

Complet



Quantum Field Theory of
neutrino mixing and

oscillations



Neutrino mixing in QFT

e Mixing relations for two Dirac fields

ve(x) = cosfvi(xz) + sinf vy(x)
vy(x) = —sinfwvi(z) + cosb va(x)

vi(e) = Gyl(t)vi(x) Go(t)
val) = Gy'() vi(x) Go(t)

— Mixing generator:

Galt) =exp |0 [ @ (vwa) — i)

d2 o (o3
For ve, we get 45z ve' = —vg with ic. vg|_y =11, dave !9 o= P2

*M.B. and G.Vitiello, Annals Phys. (1995)



e The vacuum |0), , is not invariant under the action of Gg(?):

2

10(8)) e, = G (2) 0),,

e Relation between |0), , and [0(t)).,,: orthogonality! (for V — o0)

v/ %k ln(lfsinzG\VkF)2

i = li J(2m)3 =
VlgIcl)o 1,2<0‘0(t)>6,/1 Vlgréc € 0
with
Vil? = Z \ viTk?lu,f{Q 40 for my#mo
8



e The “flavor vacuum” |0(t)),, is a SU(2) generalized coherent state!:

0)e, = H {(1 —sin? 0 |Vi|?) — €"sin @ cos 6 |Vi| (afjl Do Ty kal)
k,r

+ €"sin? 0 | Vic| | U | (a:fl Tk,l — alrjg iTk_Q) + sin? 0 | Vg |? a6 P! IT{TQ 110),,
e Condensation density:
en (Ol 0t)ese = {0 Bl BA0®) e = sin® 0 Vi)
vanishing for m; = mz and/or = 0 (in both cases no mixing).
— Condensate structure as in systems with SSB (e.g. superconductors)

— Exotic condensates: mixed pairs

— Note that [0)c, # |a)1 ® |b)2 = entanglement.

tA. Perelomov, Generalized Coherent States, (Springer V., 1986)



e Structure of the annihilation operators for [0(%))e,,:

O (1) = cos O, +sind (U () o p+e Vic(t) A )
g (1) = cosf oy 5 — sind (Uk(t) o 1 —€ Vic(t) BiTkJ)
By e(t) =cost By | +sinb (Uk( ) Bl =€ Vac(t) oy 2)

B (£) = 080 71— sin® (Vi) B+ Viclt) o)

e Mixing transformation = Rotation + Bogoliubov transformation .

— Bogoliubov coeflicients:

U (t) — rioor (Wr2—wk,1)t . Vi(t) = € vt i(wr, 24wk, 1)t
K(t) Uy oUk,1 € ; k(t) =¢ Uy 1V—k2 €

Ul® + Vil =



Decomposition of mixing generator *

The mixing generator can be expressed in terms of a rotation and a
Bogoliubov transformation. Define:

R(0) = exp {0 [(aliaka + Bl Bz )€™ — (ailakn + BB )] .
k,r

B;(6©;) —(-‘Xp{Z@kLE [akzﬁ K,i€ e Ok _ gl klosz 74”“}}7 i=1,2

Since [Bl, Bz] = 0 we put B((“)l, (")2) = Bl(@l) BQ(@Q).
e We find:
Gy = B(01,05) R() B71(01,0,)

which is realized when the ©y ; are chosen as:

(1 +%k,2)

Ux = eiiwk COS(@k,l — @k,g) ; Vk=e 2 sin(@k,l — @kyg)

*M.B., M.V.Gargiulo and G.Vitiello, Phys. Lett. B (2017)



Bogoliubov vs Pontecorvo

e Bogoliubov and Pontecorvo do not commute!

As a result, flavor vacuum gets a non-trivial term:
0)ee =Gy tl0)12 = [0)12 + [B(mi,ma), R7'(0)] [0)1

e Non-diagonal Bogoliubov transformation

T+ 9(1/(;1:){3 sz (aklﬂ k2+a )]|0>12,

T

(ma—mq)?
mima

with a =



Neutrino oscillation formula (QFT)

— We have, for an electron neutrino state:

Qk,n(t) = <Vil;,€i| B Qg(t) B |V1:,8>

- T 2
= Hoio®. 0 @} + [{8h. ), 0l.0)}
with Q. (t) = [ d*x vl (z) ve(z).
e Neutrino oscillation formula (exact result)*:
Oke(t)=1— \Uk\Q sin (29) sin <7wk’2 ;wk’l t) - \Vk\Q sir12(29) sin” (wik 2 ;w;\ ! t)

- For k> /mima, |Ux|®> — 1 and |Vi|*> — 0 = Pontecorvo formula is
recovered.

*M.B., P.Henning and G.Vitiello, Phys. Lett. B (1999).



Neutrino Ontology: flavor or mass?

e In view of the unitary inequivalence of mass and flavor
representations, we have the problem of the fundamental (ontological)

nature of neutrino.

Flavor or mass, that is the question...




Neutrino ontology: research directions

e How to verify the fundamental nature of neutrino states?

Two directions:

e Investigate the phenomenology of flavor neutrinos, with
corrections expected in the non-relativistic regime: oscillations,

beta decay endpoint, quantum correlations, ...

e Use the formal consistency of QFT, by comparing neutrino
processes in two different frames (inertial and comoving) for
accelerated particle: Unruh effect.*

*M.B., G.Lambiase and G.Luciano, Phys.Rev.D(2017); M.B., G.Lambiase,
G.Luciano and L.Petruzziello, Phys.Rev.D(2018); Phys.Lett.B(2020); EPJC(2020).



Chiral oscillations and
lepton/antineutrino

entanglement



Chiral oscillations

e Taking into account (bi)spinorial nature of neutrinos and chiral
nature of weak interaction, one naturally gets chiral oscillations *

e They occur even with one flavor; interplay with flavor oscillations

in the non-relativistic region'

e For neutrinos from CvB, chiral oscillations reduce detection by a
factor of 2.}

e Application: lepton-antineutrino entanglement and chiral oscilla-
tions in pion decay.®

“A. Bernardini and S. De Leo, Phys. Rev. D (2005)

f\/AA.Bittencourt7 A.Bernardini and M.B.,Eur.Phys.J.C(2021);EPL Persp.(2022);
fS.-F. Ge and P.Pasquini, Phys. Lett. B (2020)

§V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)



Chiral oscillations

Chiral representation of the Dirac matrices

4|0 0 5701;
o =] L o]’

Any bispinor |€) can be written in this representation as
&) = |15
IS
The Dirac equation Hp |€) = z\{} can then be written as

Er) +m|En) =0k [Er),
Cr) +mér) =10 L),

e Evolution under the free Dirac Hamiltonian Hp induces left-right chiral

oscillations.



Take initial state |1(0)) = [0, 0, 0, 1]7 which has negative helicity and
negative chirality: 45 [1(0)) = — [(0)).

The time evolved state |9 (t)) = et |1(0)) is given by

EpAm, +m p —iE t
- , . bl (pom
o) e 0 (14 ) e ()
N (1 ; Ep,mp+m) et ly_(—p,m))|,

with (for one-dimensional propagation along the e, direction)

1+ 2 )&
us(pm)) = ([ P T\ Een
p,m 1¥m |£)

Ep,m, +m <1 + Ep77:+m> Hi>

[ve(p,m)) =
4Ep,m — (1 F Yo 5+7n> ‘:|:>

)




e Survival probability of initial left-handed state

P(t) = | (b (0) o (1) |2 = 1 —

Average value of the chiral operator (95)(t)

U (t)) = —1 + 2m e (Epmt) .

(F5)(t) = (¥ (1)

Y5

= ———

E 1.0 § ,; ?

E 20.75 = &i mass (eV/?Z) 1

Nz G — 025 |

g8 05 EN N o I 0.5

28 = L [ 10 |1

E L0 g & :

8 5 S HR f R 2.0

= 0 k . . . , d —0 - 1
0 2 4 6 8 10 8 10

Momentum (units of mass) Momentum (eV/c)



Chiral and flavor oscillations

e State of a neutrino of flavor « at a given t:

[Va(t) Z Ua.i [tm,; (1)) & |vi)

where |, (t)) are bispinors.

e The state at t = 0 reads

va(0)) = [¥(0) ®ZUWIVL %(0)) ® |va) »

where [¢(0)) is a left handed bispinor.

e Survival probability:

,Paﬂa: - | <Voz< |Va - ‘Z ‘UO& 7| '7/} l#m ( )>| .



Two flavor mixing:
lve(®)) = [cos® 0[tmy (8)) +sin® 0 [1hm, (2))] @ |ve)
+sin 6 cos 0 [|thm, (t)) — [thm, (£))] @ |vi) ,

e The survival probability can be decomposed as
Peose(t) = Pfﬁe(t) + Ae(t) + Be (t)
P2, (t) is the standard flavor oscillation formula

E Mg - E m
PLLo(t) = 1 — sin® 20 sin® (%t)

and
m m ?
Ac(t) = — L cos? Osin (Bpm, t) + 2 sin? O sin (Epmyt)|
Ep1m1 Ep,mz
1 2
Be(t) = = sin2208in(Epm,t)sin(Epm,t) [ Eam2 )
2 ' : Epmy Epms

are correction terms due to the bispinorial structure.

e Agreement with the QFT formula.
- Entanglement in neutrino mixing & oscillations Quantum correlations & nonlocality in neutrino oscillations Complet



Lepton-antineutrino entanglement and chiral oscillations*

e As an application of chiral oscillations, we consider induced spin
correlations in pion decay products (m — | + »)

@ | © (= 0))
- Al® @)+ Bl@ )

Chiralities (7s): © “Il(t > 0)>

* | -1 (left handed)

® | +1 (right handed) | @ \/*>+B(t)|-©+ ~@~>

*V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)



e For the creation process, we assume the following superposition

@) = 01 (P, M) © [uy (=p,mu)) = vy (P, mp)) @ [ug(=p, mu))

\/§
ST R O
S L R S AL A
with
Npn = [ 222 pom) =14 2

4By m Epm+m’




e At t = 0 the state is given by

1y @ 11| @)

w(0) = — & L =
(|1 @ 11| ®)

Chirality projectors ﬂgz)L) = (I + ()4 /2, with 45 = diag [fz, ffz]
and A = 7, [, such that

|W(0)) = Alp, mu, mp)|74(0)) @ |14.(0)) = B(p, mu, m»)|7,(0)) @ [14(0)).

The chirality projected states at ¢t = 0 are

_ IEE®) | 0
1741y (0)) = { 0 ] ol (0) = L + (i))] ,

and the coefficients of the superposition are given by

1
1 P> 2
7 = N, mN m y ew ) J — Py 5 )
A 11, 15) = Ny Ny 1 5) - 0) [ 3 = 52— |
1
1 P> T2
B(p, mi, mz) = Npmy Npm,, f- (0, mz) [+ (p, 1) 9 m .



Spin entanglement at ¢t =0

e The state of the lepton-antineutrino pair is then described in the
composite Hilbert space He, @ Hs, ® Heo, @ Hs,

e [t is a 4-qubit entangled state.

e We can write |[U(0)) = |+¢,) @ |—¢,) @ |¥s, s,), with |[£4)
denoting the positive (negative) chirality of A = Cy;, and
|\PSV~,SI> = A(p7 ml77n17)| TSV> ® l \I/Sl> - B(p7 ’I’TL[,T)”L{,)‘ \L5u> ® | TSI,>

is the joint spin state at t = 0.

(a) Spin-Spin Entanglement
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Spin entanglement at ¢t =0

e Reduced density matrix

ps,.5(0) = Tre, ¢, \‘1’(0»(‘1’(0)@ =[¥s,,5)(Vs,,s]
= A*(p, mu, mp)| Toda) (Poda | + B (p,my, ma)| Lote) (Lot |
— A(p, my, mz)B(p, mi, my) U tod) ot |+ | dot) (tada |-

e Partial transposition yields pgﬂ’ s, from which we obtain the
spin-spin negativity for the state at t =0

Ns,.5,(0) = Nlps, 5, (0)] = 2| Ap, mu, mz) B(p, mi, myp)|.



Spin entanglement at ¢ # 0

e For the joint lepton-antineutrino state we get

(W (t)) = Alp, mu, mp) |4 (1)) @ [1y(£)) — B(p, mu, mp) |7y (8) @ |14(2)),

— antineutrino components:

D+ ()) = Np.ms [C_iEp""'”’[’er (P, ma)[ur(p,ma)) + € 7ot £ (p,my)|vr(—p, ma)ﬁ ;
2.8)) = Npng €752 - (p,mo s (p, ma)) + €770 £ (p, ms) os (—py o))
— lepton components:

14(8)) = Np.my [efw”'"”tﬁ(n ma)ug (—p, mu)) — €7t f(p,ma) |vr (p, ml))}

‘[\L(f)> = '/\/‘Pﬂ”l |:€_I:Ep"ml Lf, (pa m/l) ‘UL(_p? ml)> - eiEp.ml Lf+ (p7 m’l)'“l« (p~ ml)ﬁ .



Spin entanglement at ¢ # 0
e The reduced matrix pgs, s, (t) = Troniranity [|Y(¢))(U(t)]] describes a

mixed state with entanglement affected by chiral oscillations.

e Entanglement between the spins at time ¢

Ns,.5.(t) = Nlps, s, (t)] = [lp5, 5, = 1 = N, 5, (0)(t)

r(t) = [1 P (e — 1)

The average chiralities are given by (y5)a(t) = Tra[pa(t)] with A =1, 1:

(uelt) = 1= g 1= c0s 2Epmel],
Goh() = —1+ 27 (1~ cos (26, )].

p,mMy



Spin entanglement at ¢ # 0

e Degree of mixedeness of the spin density matrix:

N2 s (01~ T)P)

T}, (1)) = 1 - =S5 ,

quantifies entanglement in the bipartition (S5, S;); (Cy, Cy), i.e.
between spins and chiralities.

o Tr[p3, g (t)] <1 = entanglement initially encoded only in the spins
redistributes into spin-chirality entanglement.

e Entanglement encoded in the bipartition (Cy, Sy); (Cy, S;) is

conserved:

Tr[p,g,(t)} = TI'[p%(t)] = .A4(p., my, my) + B4(p7 my,my)

2
0
= 17759.251( ) 1.
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Figure 1: (a) Average lepton chirality, (b) average antineutrino chirality and (c)

spin-spin entanglement as a function of the momentum and of time.




Chiral oscillations and Bell spin correlations

e The quantity
Blp(t)] = \<§9,1 ® Sl,1> + <Sf/,1 ® gl,2> + <Sz7,2 ® §1,1> - <S17,2 ® Sl,2>\,

is the Bell observable used to investigate non-local correlations!.

For pure states, B[p] > 2 indicates that the correlations shared
between the spins are non-local and that the state is entangled.

fN.Brunner et al., Rev. Mod. Phys. (2014)
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Results & Perspectives

e We find that chiral oscillations do affect spin-spin correlations for
the entangled lepton—antineutrino couple.

e Resonance of oscillation amplitude at neutrino mass: possibility of
extracting fundamental information via quantum correlations

e We plan to study Leggett-Garg inequalities for the reduced system
involving only leptonic d.o.f.

. . . +
e Inclusion of flavor oscillations*.

iM.B, V.Bittencourt and G.Zanfardino, work in progress
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