Scotogenic models: neutrinos, dark matter and more

Avelino Vicente IFIC – CSIC / U. Valencia

NOW 2022

There are MANY Majorana neutrino mass models...

Tree-level

Radiative: 1-loop, 2-loop, 3-loop, ...

High scale

Low scale

Dimension-5: Weinberg operator

Higher dimensions: dim-7, dim-9, ...

Outline

Introduction

Finished already!

The Scotogenic model

A quick review of the well-known Scotogenic model

Beyond the Scotogenic model

Two examples of variants of the Scotogenic model

NOW 2022

The Scotogenic model

Also known as...

The inert doublet model The radiative seesaw Ma's model

The Scotogenic model

$$\mathcal{L}_{N} = \overline{N_{i}} \partial N_{i} - \frac{M_{R_{i}}}{2} \overline{N_{i}^{c}} N_{i} + y_{i\alpha} \eta \overline{N_{i}} \ell_{\alpha} + \text{h.c.}$$

$$\mathcal{V} = m_{H}^{2} H^{\dagger} H + m_{\eta}^{2} \eta^{\dagger} \eta + \frac{\lambda_{1}}{2} \left(H^{\dagger} H\right)^{2} + \frac{\lambda_{2}}{2} \left(\eta^{\dagger} \eta\right)^{2} + \lambda_{3} \left(H^{\dagger} H\right) \left(\eta^{\dagger} \eta\right)$$

$$+ \lambda_{4} \left(H^{\dagger} \eta\right) \left(\eta^{\dagger} H\right) + \frac{\lambda_{5}}{2} \left[\left(H^{\dagger} \eta\right)^{2} + \left(\eta^{\dagger} H\right)^{2} \right]$$

The Scotogenic model

[Ma, 2006]

$$\mathcal{V} = m_H^2 H^{\dagger} H + m_{\eta}^2 \eta^{\dagger} \eta + \frac{\lambda_1}{2} \left(H^{\dagger} H \right)^2 + \frac{\lambda_2}{2} \left(\eta^{\dagger} \eta \right)^2 + \lambda_3 \left(H^{\dagger} H \right) \left(\eta^{\dagger} \eta \right) + \lambda_4 \left(H^{\dagger} \eta \right) \left(\eta^{\dagger} H \right) + \frac{\lambda_5}{2} \left[\left(H^{\dagger} \eta \right)^2 + \left(\eta^{\dagger} H \right)^2 \right]$$

Inert scalar sector: η^{\pm} $\eta^{0} = (\eta_{R} + i\eta_{I})/\sqrt{2}$

Radiative neutrino masses

[Ma, 2006]

Forbidden by the \mathbb{Z}_2 symmetry

Tree-level:

1-loop neutrino masses

Dark matter

The lightest particle charged under \mathbb{Z}_2 is stable: dark matter candidate

Fermion Dark Matter: N_1

- It can only be produced via Yukawa interactions
- Potential problems with lepton flavor violation: is it compatible with the current bounds?

Scalar Dark Matter: the lightest neutral η scalar, η_R or η_I

- It also has gauge interactions
- Not correlated to lepton flavor violation

Beyond the Scotogenic model

Chuck Norris fact of the day

Chuck Norris counted to infinity. Twice.

Beyond the Scotogenic model

From "model" to "paradigm"

There are multiple Scotogenic paths to explore:

- Number of generations of each Scotogenic state
- <u>Representations</u> under the gauge group
- Additional Scotogenic states
- <u>Spontaneous</u> violation of lepton number

A "charged" Scotogenic model

Work in collaboration with Valentina De Romeri and Miguel Puerta [arXiv:2106.00481]

A charged Scotogenic model

[Aoki, Kanemura, Yagyu, 2011]

$$\mathcal{L}_{Y} = M_{\psi} \,\overline{\psi}_{L} \,\psi_{R} + Y^{L} \,\overline{\ell_{L}^{c}} \,\Phi \,\psi_{L} + Y^{R} \,\overline{\ell_{L}} \,\eta \,\psi_{R} + \text{h.c.}$$

$$\mathcal{V} = \mu_{1}^{2} \,H^{2} + \mu_{2}^{2} \,\eta^{2} + \mu_{\Phi}^{2} \,\Phi^{2} + \frac{1}{2} \,\lambda_{1} \,H^{4} + \frac{1}{2} \,\lambda_{2} \,\eta^{4} + \frac{1}{2} \,\lambda_{\Phi} \,\Phi^{4}$$

$$+ \lambda_{3} \,H^{2} \,\eta^{2} + \lambda_{4} \,H^{\dagger} \eta^{2} + \rho_{1} \,H^{2} \,\Phi^{2} + \rho_{2} \,\eta^{2} \,\Phi^{2} + \sigma_{1} \,H^{\dagger} \Phi^{2} + \sigma_{2} \,\eta^{\dagger} \Phi^{2}$$

$$+ \frac{1}{2} \left[\lambda_{5} \,(H^{\dagger} \eta)^{2} + \text{h.c.} \right] + \left[\kappa \,(\Phi^{\dagger} H)(\eta H) + \text{h.c.} \right] \,,$$

Neutrino masses

 $\langle H \rangle$ $\langle H \rangle$ **Tree-level:** Forbidden by the \mathbb{Z}_2 symmetry **1-loop neutrino masses** κ Electrically charged states in the loop Φ^+ Two independent Yukawa matrices $Y^L = Y^R$ Master parametrization M_{ψ} $\nu_L \quad Y^L$ ψ_L ψ_R $Y^R \nu_L$ [Cordero-Carrión, Hirsch, AV, 2018, 2019]

$$(m_{\nu})_{\alpha\beta} = \sum_{b=1}^{2} \frac{Y^{L}_{\alpha b} Y^{R}_{\beta b} + Y^{R}_{\alpha b} Y^{L}_{\beta b}}{32 \pi^{2} m_{\psi^{a}}} \frac{\kappa v^{2}}{m_{H_{2}^{\pm}}^{2} - m_{H_{1}^{\pm}}^{2}} \left(m_{H_{2}^{\pm}}^{2} \log \frac{m_{\psi^{b}}^{2}}{m_{H_{2}^{\pm}}^{2}} - m_{H_{1}^{\pm}}^{2} \log \frac{m_{\psi^{b}}^{2}}{m_{H_{1}^{\pm}}^{2}}\right)$$

Dark matter

The lightest particle charged under \mathbb{Z}_2 is stable: dark matter candidate

Fermion Dark Matter: ψ_1

• Electrically charged!

Scalar Dark Matter:

A: the lightest Φ scalar

Electrically charged!

B: the lightest neutral η scalar, η_R or η_I

- It also has gauge interactions
- Not correlated to lepton flavor violation
- Any new phenomenology due to electrically charged states?

Dark matter phenomenology

NOW 2022

A Scotogenic model "for everything"

Work in collaboration with **Ricardo Cepedello** and **Pablo Escribano** [arXiv:2209.02730]

A novel Scotogenic model

[Cepedello, Escribano, AV, 2022]

		gen	$SU(3)_c$	${\rm SU(2)}_L$	$\mathrm{U}(1)_{Y}$	\mathbb{Z}_2
	η	2	1	2	1/2	_
Leptoquark	$\mid S \mid$	1	3	2	1/6	—
$S = \begin{pmatrix} S_{\frac{2}{3}} \\ S_{-\frac{1}{3}} \end{pmatrix}$	ϕ	1	1	1	-1	—
	N	1	1	1	0	_

$$-\mathcal{L}_{Y} = \underline{Y_{N}} \,\overline{N} \,\ell_{L} \,\eta + \underline{Y_{S}} \,\overline{q}_{L} \,S \,N + \kappa \,\overline{N^{c}} \,e_{R} \,\phi^{\dagger} + \frac{1}{2} \,\underline{M_{N}} \,\overline{N^{c}} \,N + \text{h.c.}$$
$$\mathcal{V} \supset \frac{\lambda_{5}}{2} \,\left(H^{\dagger} \,\eta\right)^{2} + \mu \,H \,\eta \,\phi + \text{h.c.}$$

NOW 2022

Neutrino masses

Tree-level: Forbidden by the \mathbb{Z}_2 symmetry

1-loop neutrino masses

Scotogenic mechanism

However: unusual generation numbers

$$n_N = 1 \quad n_\eta = 2$$

[Escribano, Reig, AV, 2020]

$$(m_{\nu})_{\alpha\beta} \approx \frac{1}{32\pi^2} v^2 \sum_{a,b} (Y_N)_{\alpha a} (Y_N)_{\beta b} \lambda_5^{ab} \frac{M_N}{m_b^2 - M_N^2} \left[\frac{m_b^2}{m_a^2 - m_b^2} \log \frac{m_a^2}{m_b^2} - \frac{M_N^2}{m_a^2 - M_N^2} \log \frac{m_a^2}{M_N^2} \right]$$

Dark loops

NOW 2022

Dark loops

 $BR(\mu \to e\gamma) < 4.2 \cdot 10^{-13}$

Final discussion

Final discussion

Scotogenic neutrino mass models constitute an economical class of models, including a dark matter candidate. There are plenty of ways to go beyond the minimal model

Two examples:

A variant of the Scotogenic model with electrically charged states. Novel annihilation processes, but some fine-tuning is required to escape the lepton flavor violating bounds

A model featuring some additional Scotogenic states, capable of explaning the $b \rightarrow s\ell\ell$ and muon g-2 anomalies, in addition to neutrino masses and dark matter

Thanks for your attention!

And congratulations to the organizers for an awesome NOW 2022

NOW 2022

Backup slides

The master parametrization

[Cordero-Carrión, Hirsch, AV, 2018, 2019]

$$m = f \left(y_1^T M y_2 + y_2^T M^T y_1 \right)$$

$$y_1 = \frac{1}{\sqrt{2f}} V_1^{\dagger} \begin{pmatrix} \Sigma^{-1/2} W A \\ X_1 \\ X_2 \end{pmatrix} \bar{D}_{\sqrt{m}} U^{\dagger}$$
$$y_2 = \frac{1}{\sqrt{2f}} V_2^{\dagger} \begin{pmatrix} \Sigma^{-1/2} \widehat{W}^* \widehat{B} \\ X_3 \end{pmatrix} \bar{D}_{\sqrt{m}} U^{\dagger}$$

A charged Scotogenic model

\mathbb{Z}_2 -odd scalars

 Φ^{++} — Doubly-charged scalar

NOW 2022

Analysis

Tools

SARAH-4.11.0

SPheno-4.0.2

micrOmegas-5.0.9

$$\begin{array}{l} \lambda_{1} = 0.26 \\ \lambda_{2} = 0.5 \\ \lambda_{3} = 10^{-2} \\ \lambda_{4} \in \begin{bmatrix} -0.5, -10^{-4} \end{bmatrix} \\ \lambda_{5} \in \begin{bmatrix} -0.32, -0.003 \end{bmatrix} \\ \lambda_{\Phi} = 3 \times 10^{-3} \\ \mu_{2}^{2} \in \mu_{\Phi}^{2} \text{ except if } m_{\eta_{R}} \in \begin{bmatrix} 50, 100 \end{bmatrix} \text{GeV}^{2} \end{array} \qquad \begin{array}{l} m_{\psi^{1}} = 2.1 \text{ TeV} \\ m_{\psi^{2}} = 2.3 \text{ TeV} \\ \rho_{1} = 0.5 \\ \rho_{2} = 0.7 \\ \sigma_{1} \in \begin{bmatrix} 10^{-5}, 0.16 \end{bmatrix} \\ \sigma_{2} = 10^{-2} \\ \kappa = 10^{-8} \end{array}$$

- Neutrino oscillation data
- Lepton flavor violation
- Electroweak precision data ($\Delta \rho$)
- Dark matter searches
- LHC searches
- Higgs decays (invisible & diphoton)
- Lifetime of the next-to-lightest \mathbb{Z}_2 -odd state

Constraints:

NOW 2022

Analysis

Some of the constraints applied in the numerical scan

$$\begin{array}{c|c} & \text{BR}(\mu \to e\gamma) & < 4.2 \times 10^{-13} \\ & \text{BR}(\mu \to eee) & < 1. \times 10^{-12} \\ & \text{CR}(\mu^-, \text{Au} \to e^-, \text{Au}) & \\ & \frac{\text{BR}(h \to \gamma\gamma)}{\text{BR}(h \to \gamma\gamma)_{\text{SM}}} & [0.84, 1.41] \\ & \text{BR}(h \to \gamma\gamma)_{\text{SM}} & \\ & \text{BR}(h \to \text{inv}) & \\ & \delta\rho & \\ & \Omega_{\eta_R}h^2 & [0.1164, 0.1236] \end{array}$$

Z-boson mediated scattering suppressed due to sizable λ_5

Our predictions lie well below the current limits from γ -rays

 $\ell_{lpha}
ightarrow \ell_{eta} \gamma$

[Kubo et al, 2006] [Ma, Raidal, 2001]

$$\mathcal{L}_{\text{eff}} = \left(\frac{\mu_{\beta\alpha}}{2}\right) \overline{\ell_{\beta}} \sigma^{\mu\nu} \ell_{\alpha} F_{\mu\nu}$$

 $\mu_{\beta\alpha} = em_{\alpha}A_D/2$

Transition magnetic moment

 $\ell_{\alpha} \to 3 \ell_{\beta}$

 $\ell_{\alpha}(p) \rightarrow \ell_{\beta}(k_1)\ell_{\beta}(k_2)\ell_{\beta}(k_3)$

[Toma, Vicente, 2013]

Boxes

 $i\mathcal{M}_{\text{box}} = ie^2 \mathbf{B} \left[\bar{u}(k_3)\gamma^{\mu} P_L v(k_2) \right] \left[\bar{u}(k_1)\gamma_{\mu} P_L u(p) \right]$

 $e^{2}B = \frac{1}{(4\pi)^{2}m_{n^{+}}^{2}} \sum_{i, j=1}^{3} \left[\frac{1}{2} D_{1}(\xi_{i}, \xi_{j}) y_{j\beta}^{*} y_{j\beta} y_{i\beta}^{*} y_{i\alpha} + \sqrt{\xi_{i}\xi_{j}} D_{2}(\xi_{i}, \xi_{j}) y_{j\beta}^{*} y_{j\beta}^{*} y_{i\beta} y_{i\alpha} \right]$

$\mu-e$ conversion in nuclei

[Toma, Vicente, 2013]

• No box contributions from the inert doublet (they do <u>not</u> couple to the quark sector)

• The phenomenology is determined by photon penguin diagrams (Z penguins are negligible)

A philosophical moment

Occam's razor:

The simplest explanation is the correct one

Occam's laser:

The most awesome explanation is the correct one

Occam's hammer:

My explanation is the correct one

All credit goes to Alberto Aparici

NOW 2022