

The GERDA enterprise

in the search for matter creation

Tommaso Comellato - Neutrino Oscillation Workshop 2022 - 09.09.2022

Carlor Martin

\$ 2.40

a sure

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

• β -decays move toward stability

- β -decays move toward stability
- In some cases, single β -decay is forbidden

- β -decays move toward stability
- In some cases, single β -decay is forbidden
- Path towards stability with a "double-jump"
 - Double β -decay

- β -decays move toward stability
- In some cases, single β -decay is forbidden
- Path towards stability with a "double-jump"
 - Double β -decay
- Hypothesized in 1930's
 - $T_{1/2} > O(10^{17})$ y [Goeppert-Mayer, M, Phys Rev 48 (1935), no. 6, 512–516]

- β -decays move toward stability
- In some cases, single β -decay is forbidden
- Path towards stability with a "double-jump"
 - Double β -decay
- Hypothesized in 1930's
 - $T_{1/2} > O(10^{17})$ y [Goeppert-Mayer, M, Phys Rev 48 (1935), no. 6, 512–516]
- Measured in several isotopes (⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, 136Xe...)
 - $T_{1/2} \approx \mathcal{O}(10^{18 \div 21}) \,\mathrm{v}$

A particular double-beta decay creates matter The neutrinoless double-beta decay

- Double-beta decay channel without emission of neutrinos
- Creation of matter without anti-matter
 - Lepton number not conserved $\Delta L = 2$
 - Not allowed in the Standard Model
- Portal to new physics

A particular double-beta decay creates matter The neutrinoless double-beta decay

 $(A, Z) \to (A, Z + 2) + 2e^{-} + \mathcal{V}_{e}$ $2n \rightarrow 2p + 2e^{-1}$

- Double-beta decay channel without emission of neutrinos
- Creation of matter without anti-matter
 - Lepton number not conserved $\Delta L = 2$
 - Not allowed in the Standard Model
- Portal to new physics

Detecting double-beta decay The experimental signature

- Signature:
 - $0\nu\beta\beta$: energy deposition of 2 electrons (a) $Q_{\beta\beta}$ (= 2039 keV for ⁷⁶Ge)
 - $2\nu\beta\beta$: energy deposition of 2 electrons (a) $E < Q_{\beta\beta}$
- Experimental challenge:
 - No background @ $Q_{\beta\beta}$ for $\mathcal{O}(10)$ y

...with the GERmanium Detector Array experiment

 $\sigma(E) / E = 0.1\%$ **Ο**νββ $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

2νββ

2νββ

2νββ

0.95 σ(E) / E = 0.1% **Ο**νββ $T_{1/2}^{0v} / T_{1/2}^{2v} = 10^{-6}$

E / $Q_{\beta\beta}$

σ(E) / E = 0.5%Q_{ββ} $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

0.95 E / $Q_{\beta\beta}$ σ(E) / E = 0.1% **Ο**νββ $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

0.95 E/Q₆₆ I. Comellato (IUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

...with the GERmanium Detector Array experiment

Ονββ • Germanium promising ^{T⁰/_{1/2}/T²/_{1/2} didate since 1967}

 $\sigma(E) / E = 0.1\%$

[E. Fiorini et al., Phys Lett B, 25 (1967), 200, 602-603]

0νββ

...with the GERmanium Detector Array experiment

0νββ • Germanium promising ^{T⁰/_{1/2}/T²/_{1/2} **didate since 1967**} [E. Fiorini et al., Phys Lett B, 25 (1967), 2006, 602-603]

 $\sigma(E) / E = 0.1\%$

• Use HPGe detectors enriched in ⁷⁶Ge

	0.95	1	
$\sigma(E) / E = 0.5\%$	$\sigma(E)$ / E = 0.1%	Ονββ	E / $Q_{_{\beta\beta}}$
$T_{1/2}^{0\nu}$ / $T_{1/2}^{2\nu}$ = 10 ⁻⁶	$T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$	C (pp	

 $\sigma(E) / E = 0.5 \% Q_{\beta\beta}$ $T_{1/2}^{0v} / T_{1/2}^{2v} = 10^{-6}$

0.95 $\sigma(E) / E = 0.1\%$ $T_{1/2}^{0v} / T_{1/2}^{2v} = 10^{-6}$ $E/Q_{\beta\beta}$ **Ο**νββ

0νββ

0νββ

...with the GERmanium Detector Array experiment

- **Ο**νββ • Germanium promising ^{T⁰/₁/₂/^{T²/} **T**¹⁰/₁/⁶ date since 1967} [E. Fiorini et al., Phys Lett B, 25 (1967), 200, 602-603]
- Use HPGe detectors enriched in ⁷⁶Ge

•
$$Southarpoint CE = 0.56 etector T_{1/2}^{0.95}$$

T_{1/2}^{0.95} = 10⁻⁶ tector T

σ(E) / E = 0.1% $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

 $\sigma(E) / E = 0.1\%$

0νββ

0.95 1

$$\sigma(E) / E = 0.1\%$$
 $O_{\nu\beta\beta}$ $E / Q_{\beta\beta}$
 $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

Ονββ

 $E/Q_{\beta\beta}$

...with the GERmanium Detector Array experiment

- Ονββ • Germanium promising ^{T⁰/₁/₂/^{T²/} **T**¹⁰/₁/⁶ date since 1967} [E. Fiorini et al., Phys Lett B, 25 (1967), 2006, 602-603]
- Use HPGe detectors enriched in ⁷⁶Ge 0.95

• South
$$C_{T_{1/2}^{0V}} = 0.5^{\circ}$$
 detector

• Density

2νββ

 $\sigma(E) / E = 0.1\%$

σ(E) / E = 0.1%

 $T_{1/2}^{0\nu}$ / $T_{1/2}^{2\nu}$ = 10⁻⁶

 $\sigma(E) / E = 0 E / Q_{\beta\beta}$ $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

0.95 1

$$\sigma(E) / E = 0.1\%$$
 $O_{\nu\beta\beta}$ $E / Q_{\beta\beta}$
 $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

0νββ

 $E/Q_{\beta\beta}$

 $E/Q_{\beta\beta}$

Ονββ

...with the GERmanium Detector Array experiment

Ονββ • Germanium promising ^{T⁰/₁/₂/^{T²/} **T**¹⁰/₁/⁶ date since 1967} [E. Fiorini et al., Phys Lett B, 25 (1967), 200, 602-603]

 $\sigma(E) / E = 0.1\%$

- Use HPGe detectors enriched in ⁷⁶Ge
 - South $C_{T_{1/2}^{0V}} = 0.5\%$ detector
- Density 0νββ

1

$$\sigma(E) / E = 0.5 \% Q_{\beta\beta}$$

 $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

1

$$\sigma(E) / E = 0.1\%$$
 $P = 0.1\%$ $P = 0.1\%$ $P = 0.1\%$ $P = 0.1\%$ $P = 1b = 10\%$ $P = 10\%$

0.95 1

$$\sigma(E) / E = 0.1\%$$
 $O_{\nu\beta\beta}$ $E / Q_{\beta\beta}$
 $T_{1/2}^{0\nu} / T_{1/2}^{2\nu} = 10^{-6}$

...with the GERmanium Detector Array experiment

- Ονββ • Germanium promising ^{T⁰/_{1/2}/T²/_{1/2} didate since 1967} [E. Fiorini et al., Phys Lett B, 25 (1967), 2005, 602-603]
- Use HPGe detectors enriched in ⁷⁶Ge

•
$$South CE = 0.5\%$$

 $T_{1/2}^{0v} / T_{1/2}^{2v} = 10^{6}$

• Radio-purity [GERDA, Astropart.Phys. 91 (2017) 15-21] $E/Q_{\beta\beta}$ $\sigma(E) / E = 0.1\%$ **Ο**νββ

...with the GERmanium Detector Array experiment

0νββ • Germanium promising ^{T⁰/_{1/2}/T²/_{1/2} didate since 1967} [E. Fiorini et al., Phys Lett B, 25 (1967), 2005, 602-603]

 $\sigma(E) / E = 0.1\%$

• Use HPGe detectors enriched in ⁷⁶Ge 0.95

•
$$South CE = 0.5\%$$

 $T_{1/2}^{0v} / T_{1/2}^{2v} = 10^{6}$

- Density
 - 0νββ • Radio-purity [GERDA, Astropart.Phys. 91 (2017) 15-21] 0.95
 - $E_{x_{\alpha}}^{\sigma(E)} = 0^{\frac{1}{6}} e_{\alpha}^{\beta\beta} e_{\beta\beta} e_{\beta\beta}$

2νββ

2νββ

0νββ

 $E/Q_{\beta\beta}$

efficiency

...with the GERmanium Detector Array experiment

0νββ • Germanium promising ^{T⁰/_{1/2}/T²/_{1/2} didate since 1967} [E. Fiorini et al., Phys Lett B, 25 (1967), 2005, 602-603]

 $\sigma(E) / E = 0.1\%$

• Use HPGe detectors enriched in ⁷⁶Ge 0.95

•
$$South CE = 0.50 etector$$

 $T_{1/2}^{0v} / T_{1/2}^{2v} = 10^{-6}$

• Density

• $E_{x_{\alpha}}^{\sigma(E)} = 0^{\sharp} \mathcal{A}_{\beta\beta}^{Q} = 0^{\sharp} \mathcal{A}_{\beta\beta}^{Q} = 0.1\% \mathcal{A}_{\beta\beta}^{C} \mathcal{A}_{\beta\beta}^{C} = 0.1\% \mathcal{A}_{\beta\beta}^{C} \mathcal{A}_{\beta$

2νββ

• Event topology Discrimination - Pulse Shape Discrimination (PSD) 0.95

 E/Q_{RR} I. Comellato (IUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

efficiency

...with the GERmanium Detector Array experiment

Background expectations $@(Q_{\beta\beta} \pm 2\sigma) = 0.3$ counts after 103.7 kg yr exposure

High resolution, background-free search of $0\nu\beta\beta$ decay

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

[GERDA, *Phys Rev Lett* **125** (2020), 252502]

The GERDA collaboration

- Located @ Laboratori Nazionali del Gran Sasso (Italy)
- Shielded by 3500 m.w.e.

Goals

Background

Exposure

Sensitivity

 10^{-3} cts/(keV kg yr)

>100 kg yr $T_{1/2}^{0\nu\beta\beta} \ge 10^{26} \,\mathrm{yr}$

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Event discrimination in germanium Signal and background

Signal

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Image produced with: https://github.com/gipert/gedet-plots

Background

Event discrimination in germanium Signal and background

Signal

Background

Active background suppression Performance

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Active background suppression Performance

Counts / (keV·kg·yr) 10³ All detectors - 103.7 kg·yr Prior to analysis cuts After PSD cuts 10² 10 K-42 K-40 $\mathsf{Q}_{\beta\beta}$ Bi-214 **TI-208** Bi-214 **10**⁻¹ ՆՈստ ᠈᠃᠆ᡀᡔ᠈᠓᠋ ᠘ᡁᢩ **10**⁻² 10^{-3} 2000 1000 1500 2500

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Pulse Shape Discrimination Signal and background

Signal

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Image produced with: https://github.com/gipert/gedet-plots

Background

Pulse Shape Discrimination Signal and background

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Image produced with: https://github.com/gipert/gedet-plots

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

[GERDA, European Phys J C 78 (2018), 388]

[GERDA, European Phys J C **78** (2018), 388]

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

[GERDA, *European Phys J C* **78** (2018), 388]

- 16 PMTs
- SiPM readout
- with Germanium
- Acceptance [GERDA, Phys Rev Lett 125 (2020), 252502]

[GERDA, *European Phys J C* **78** (2018), 388]

How it works

• ~1.5 km light guiding fibers +

• Vetoes events in coincidence

$$(0\nu\beta\beta):~~98\%$$

Active background suppression Performance

Counts / (keV·kg·yr) 10³ All detectors - 103.7 kg·yr Prior to analysis cuts After PSD cuts 10² 10 K-42 K-40 $\mathsf{Q}_{\beta\beta}$ Bi-214 **TI-208** Bi-214 **10**⁻¹ ՆՈստ ᠈᠃᠆ᡀᡔ᠈᠓᠋ ᠘ᡁᢩ **10**⁻² 10^{-3} 2000 1000 1500 2500

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Total active background suppression Performance

10³ All detectors - 103.7 kg·yr Prior to analysis cuts After PSD cuts 10² After LAr veto and PSD cuts $2\nu\beta\beta$ decay 10 K-40 $\mathsf{Q}_{\beta\beta}$ Bi-214 **TI-208** Bi-214 **10**⁻¹ ₄ \/[տ_{լտ} ^{ارمی}کال ل **10**⁻² 10^{-3} 1000 1500 2000 2500

Counts / (keV·kg·yr)

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Final results @Qßß

Final Results of GERDA ... in the analysis window

[GERDA, Phys Rev Lett 125 (2020), 252502]

- Blind analysis around $Q_{\beta\beta}$
- Latest unblinding in May 2020
- 2 new counts in $Q_{\beta\beta} \pm 25$ keV
- No new counts @ $Q_{\beta\beta}$
- Background: lacksquare
 - $5.2^{+1.6}_{-1.3} \cdot 10^{-4} \text{ cts/(keV kg yr)}$

Final Results of GERDA ... in the analysis window

[GERDA, Phys Rev Lett 125 (2020), 252502]

- Blind analysis around $Q_{\beta\beta}$
- Latest unblinding in May 2020
- 2 new counts in $Q_{\beta\beta} \pm 25$ keV
- No new counts @ $Q_{\beta\beta}$
- Background: ullet
 - $5.2^{+1.6}_{-1.3} \cdot 10^{-4} \text{ cts/(keV kg yr)}$

Final Results of GERDA

[GERDA, Phys Rev Lett 125 (2020), 252502]

...limits on $0\nu\beta\beta$

- Combined (data partitions, Phase I) unbinned maximum likelihood fit [GERDA, *Nature* **544** (2017), 47–52]
- Best fit for null signal strength
- Limit (and sensitivity) on $0\nu\beta\beta$ half-life:

 $T_{1/2}^{0\nu\beta\beta} > 1.8 \cdot 10^{26} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$

Limits on $m_{\beta\beta}$: lacksquare

> $m_{\beta\beta} < [79 - 180] \text{ meV}$ PP

Final Results of GERDA

Background	10-3
Exposure	

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

GERDA's studies below $Q_{\beta\beta}$ A broad physics program

- Precise determination of the $2\nu\beta\beta$ half-life
- Updated limits on Majoron-involving decays
- First constraints with ⁷⁶Ge on Lorentz violation
- First experimental constraints on light exotic fermions
- Constraints on sterile neutrinos

• Competitive results thanks to LAr instrumentation

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillatio Workshop- 09.09.2022 - Rosa Marina

LAr instrumentation provides clean $2\nu\beta\beta$ spectrum ...and its modeling gives knowledge on the background underneath

- LAr instrumentation reduces background by factor ~10 in the $2\nu\beta\beta$ region
- Synergy background model-LAr model reveals what background is underneath
- Almost pure $2\nu\beta\beta$ spectrum

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Precision measurement of the $2\nu\beta\beta$ half-life

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Precision measurement of the $2\nu\beta\beta$ half-life

- Result of GERDA Phase I:
 - w/o LAr instrumentation
 - Systematics dominated by uncertainty in the active volume

•
$$T_{1/2}^{2\nu\beta\beta} = (1.926 \pm 0.094) \cdot 10^{21} \,\mathrm{yr}$$

Precision measurement of the $2\nu\beta\beta$ half-life

- Result of GERDA Phase I:
 - w/o LAr instrumentation
 - Systematics dominated by uncertainty in the active volume
 - $T_{1/2}^{2\nu\beta\beta} = (1.926 \pm 0.094) \cdot 10^{21} \,\mathrm{yr}$
- New result of GERDA Phase II:
 - w/ LAr instrumentation
 - Improved systematics
 - $T_{1/2}^{2\nu\beta\beta} = (2.022 \pm 0.041) \cdot 10^{21} \text{ yr Preliminary}$
 - Most precise determination of ⁷⁶Ge $2\nu\beta\beta$ half-life

Exotic double-beta decay modes

Will show up as deformations on the $2\nu\beta\beta$ spectrum

- Search for double-beta decays with emission of one or two exotic particles
 - Majorons
 - $(A, Z) \rightarrow (A, Z + 2) + 2e^{-} + J(2J)$
 - Limits on the neutrino-Majoron coupling constant g_J
 - Sterile neutrinos N [Phys.Rev.D 103 (2021) 5, 055019, Phys. Lett. B 815 (2021)]
 - $(A,Z) \to (A,Z+2) + 2e^- + \bar{\nu}_{\rho} + N$
 - Light exotic fermions χ [Phys.Rev.D 103 (2021) 5, 055019, Phys. Lett. B 815 (2021)]
 - $(A, Z) \to (A, Z + 2) + 2e^{-} + 2\bar{\chi}$
- Lorentz violation in the neutrino sector
 - $(A,Z) \to (A,Z+2) + 2e^- + 2\bar{\nu}_{\rho}^{LV}$

Exotic double-beta decay modes

[arXiv:2209.01671]

Results

- No evidence of positive signals, but 90% C.L. limits are derived
- Details in backup

Exotic decay mode	Observed Lin
Decay with Majorons (n=1)	T _{1/2} >6.4 10 ²³ yr
n=2	T _{1/2} >2.9 10 ²³ yr
n=3	T _{1/2} >1.2 10 ²³ yr
n=7	T _{1/2} >1.0 10 ²³ yr
Lorentz Violation	(-2.7 < a _{of} ⁽³⁾ < 6.2) 10 ⁻⁶
Sterile Neutrinos (m _N =500-600 keV)	sin² 9 < 0.013
Exotic fermions (m=300 keV)	T _{1/2} > 1.6 10 ²³ yr

Conclusions

- GERDA has run in background-free regime for the entire duration of its data taking
- Provided among the most stringent constraints on the halflife of $0\nu\beta\beta$ decay
- Obtained a precise determination of the half-life of ⁷⁶Ge $2\nu\beta\beta$ decay
- Searched for a broad variety of BSM physics and obtained competitive limits
- Bright future ahead
 - ->See R. Brugnera's talk tomorrow 16:25

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Backup

The data taking of GERDA phase II

- Phase II duty cycle: 87.7%
- 103.7 kg yr (127.2 kg yr with Phase I)
- Upgrade in 2018

new fiber shroud

T. Comellato (TUM) - tommaso.comellato@tum.de Neutrino Oscillation Workshop- 09.09.2022 - Rosa Marina

Performance on the energy scale

Resolution stability

6 2 0 2016-01 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 2016-07 Date (year-month)

Total active background suppression ...per detector family

• ²¹⁰Po coming from coaxial detectors

• BI: $\mathcal{O}(10^{-4})$ cts/(keV kg yr) for all detector families

Majoron-involving decays $(A, Z) \to (A, Z + 2) + 2e^{-} + J(2J)$

- Searched for double-beta decays with emission of two Majorons according to 4 different models (n=1,2,3,7)
- Limits can be converted into the Majoron-neutrino coupling constant g_J

Decay mode	$T_{1/2} ({ m yr})$		g_J
	Sensitivity	Observed limit	
0 uetaeta J $(n=1)$	$3.5 \cdot 10^{23}$	$> 6.4 {\cdot} 10^{23}$	$< (1.8 - 4.4) \cdot 10^{-1}$
$0 uetaeta J \ (n=2)$	$2.5 \cdot 10^{23}$	$>2.9{\cdot}10^{23}$	—
$0 uetaeta J \ (n=3)$	$1.3 \cdot 10^{23}$	$> 1.2{\cdot}10^{23}$	< 0.017
$0 uetaeta JJ \ (n=3)$	$1.3 \cdot 10^{23}$	$> 1.2 {\cdot} 10^{23}$	< 1.2
0 uetaeta JJ~(n=7)	$5.8 \cdot 10^{22}$	$> 1.0 {\cdot} 10^{23}$	< 1.0

Lorentz violation

Phase space ratio to combine SM distribution and LV perturbation from [Phys. Rev. D 103, L031701]

 $(A, Z) \to (A, Z+2) + 2e^{-} + 2\bar{\nu}_{e}^{LV}$

- Lorentz violation in the neutrino sector would affect the energy distribution of electrons through isotropic component $a_{of}^{(3)}$
- First constraints with ⁷⁶Ge
- Results comparable with other double-beta isotopes

Search for light-exotic fermions $(A,Z) \to (A,Z+2) + 2e^- + \bar{\nu}_{\rho} + N \text{ AND } (A,Z) \to (A,Z+2) + 2e^- + 2\bar{\chi}$

- Massive exotic fermions would shift the endpoint to lower values
- We searched for sterile neutrinos (N) and their Z_2 -odd variant
- Limits for sterile neutrinos not competitive with single-beta decay experiments
- Pair production of exotic fermions can only be tested in double-beta decay

Background Model

Global picture of the neutrino mass

arXiv:2202.01787

On NMEs and discovery potential

