

Lessons on Astrophysical Transients from Neutrinos

Ersilia Guarini

Niels Bohr Institute

NOW 2022 Ostuni 04/09/22-11/09/22

CARL§BERGFONDET

Outline

- The multi-messenger astrophysics era.
- Neutrino production in astrophysical transients.
- The optical jump of GRB afterglows.
- Luminous Fast Blue Optical Transients (LFBOTs).
- Conclusions and outlook.

Based on:

- E. Guarini, I. Tamborra, D. Bégué, T. Pitik and J. Greiner, JCAP 06 (2022) 06, 034 [arXiv:2112.07690]
- E. Guarini, I. Tamborra and R. Margutti, ApJ 935 (2022)157 [arXiv:2205.12282]

Looking at the Universe through Photon Lenses

Looking at the Universe through Photon Lenses

We are great photon hunters!

What if we could change our glasses?

Looking at the Universe through Neutrino Lenses

- Photons are absorbed on their way to Earth: not enough information.
- We need new messengers to probe the Universe.

Neutrino Production in Astrophysical Transients

- Shocks are common in astrophysics.
- Protons and electrons can be accelerated at the shocks.
- Electrons cool emitting photons, while protons mainly cool through photo-hadronic and hadronic interactions.

$$p + \gamma \longrightarrow \Delta^+ \longrightarrow \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases} \qquad \begin{bmatrix} p + p \to \pi^+ : \pi^- : \pi^0 \\ p + \pi^- : \pi^0 & 2/3 \end{bmatrix}$$

$$\begin{array}{c} \pi^+ \longrightarrow \mu^+ + \nu_\mu \\ \mu^+ \longrightarrow \bar{\nu}_\mu + \nu_e + e^+ \end{array}$$

How could we use neutrinos?

Let us look at two examples!

Example 1: Optical Jumps in Gamma-ray Burst Afterglows

GRBs: The Standard Fireball Model

Afterglow emission

- Delayed emission observed up to several days after the trigger of the burst
- Observed in the optical/infrared, radio , X-ray and TeV band
- The afterglow emission results from the interaction between the ejecta and the circumburst medium (CBM).

Afterglow: Optical Jump

- Sudden re-brightening observed up to a few hours after the prompt emission.
- Observed in the optical/X-ray band (usually brighter in optical).
- The standard fireball model does not account for an optical jump.

Nardini et al., Astron. Astrophys. (2013)

Greiner et al., A&A (2013)

Merger of Two Relativistic Shells

Neutrino Event Rate

• An optical jump in the total light-curve corresponds to a jump in the neutrino event rate.

• ISM scenario: total number of neutrinos increases by a factor $\, \sim 6$.

• Upcoming radio telescopes will be sensitive to GRB afterglows up to $d_L \sim 10 - 40 \text{ Mpc}$.

Take Home Messages on GRB Optical Jumps

- Optical jumps leave a signature in the neutrino signal, the neutrino number increases up to an order of magnitude.
- Future neutrino facilities, e.g. IceCube-Gen2 Radio, can potentially detect neutrinos from GRB afterglows with optical jumps.
- Neutrinos could be used to constrain the properties of the CBM where the GRB occurred.
- Neutrinos could probe the mechanism powering the optical jump.

Example 2: Luminous Fast Blue Optical Transients (LFBOTs)

- Supernova-like transients.
- Optical rise times: ~2 days.
- Optical peak luminosities: $L_{\text{peak}} \gtrsim 10^{44} \text{ erg s}^{-1}$.
- Observed in the optical, X-ray and radio bands.

- Supernova-like transients.
- Optical rise times: ~2 days.
- Optical peak luminosities: $L_{\text{peak}} \gtrsim 10^{44} \text{ erg s}^{-1}$.
- Observed in the optical, X-ray and radio bands.

Ho et al. , 2021 (arXiv:2105.08811)

- Supernova-like transients.
- Optical rise times: ~2 days.
- Optical peak luminosities: $L_{\text{peak}} \gtrsim 10^{44} \text{ erg s}^{-1}$.
- Observed in the optical, X-ray and radio bands.

- Supernova-like transients.
- Optical rise times: ~2 days.
- Optical peak luminosities: $L_{\text{peak}} \gtrsim 10^{44} \text{ erg s}^{-1}$.
- Observed in the optical, X-ray and radio bands.

- Supernova-like transients.
- Optical rise times: ~2 days.
- Optical peak luminosities: $L_{\text{peak}} \gtrsim 10^{44} \text{ erg s}^{-1}$.
- Observed in the optical, X-ray and radio bands.

LFBOTs: What We Still Don't Know

- The radio emission is consistent with synchrotron radiation from ejecta-CSM interaction ($v_{ej} \gtrsim 0.1c$).
- The origin of the ejecta is still unknown.
- What powers the optical and X-ray radiation?

Main Ingredients

- Hydrogen (H) in the spectrum.
- Asymmetry required.
- No γ -rays observed from LFBOTs.

Theoretical Models

See Gottlieb, Tchekhovskoy and Margutti, Mon. Not. Roy. Astron. Soc. (2022); Metzger, Astrophys. J. (2022)

Cocoon model

Theoretical Models

See Gottlieb, Tchekhovskoy and Margutti, Mon. Not. Roy. Astron. Soc. (2022); Metzger, Astrophys. J. (2022)

Cocoon model

Merger model

 $v_{\rm s} \sim 0.01c$

Neutrino Signal from Nearby LFBOTs

Guarini, Tamborra and Margutti, ApJ (2022)

- Largest contribution from the choked jet.
- The flux from a choked jet is direction dependent.
- The flux from CSM interaction is isotropic.

Take Home Messages on LFBOTs

- Neutrinos carry signatures on the mechanism powering LFBOTs.
- Existing IceCube neutrino data in the direction of AT2018cow restrict the allowed parameter space for a choked jet.

Conclusions

- Photon and neutrino fluxes are larger when a jump occurs in GRBs.
- Neutrinos can disentangle the mechanism powering LFBOTs sources.
- Upcoming neutrino facilities such as IceCube-Gen2 radio, GRAND200k, RNO-G and POEMMA and existing neutrino telescopes such as IceCube will be able to detect the signal from future nearby GRBs and/or LFBOTs.

Neutrinos are unique probes of the transient sky.

Exciting times ahead for multi-messenger astrophysics!

Thanks for your attention!

Questions?

Bakcup slides

The Standard Fireball Model (III)

Classic Afterglow - Neutrino and Photon Energy fluxes

Degeneracies of the problem

Scaling relations for the merged shell

$$R_{\text{dec},m}^{\text{ISM}} \simeq \left(\frac{3\tilde{E}_{k,m}}{8\pi n_0 m_p c^2 \Gamma_m^{0^2}} + R_{\text{coll}}^3\right)^{1/3} \qquad F$$

$$R_{\text{dec},m}^{\text{wind}} \simeq \frac{\tilde{E}_{k,m}}{4\pi A m_p c^2 {\Gamma_m^0}^2} + R_{\text{coll}}$$

The initial energy of the merged shell is:

$$\tilde{E}_{\text{tot},m} \simeq \frac{4}{3}\tilde{W}_m + \Gamma_m^0 m_m c^2$$

Merged shell

From the conservation of energy and momentum we get the initial Lorentz factor of the merged shell and the internal energy released at the collision.

Initial Lorentz factor

$$\Gamma_m^0 \simeq \sqrt{\frac{m_f \Gamma_f + m_{\text{eff}} \Gamma}{m_f / \Gamma_f + m_{\text{eff}} \Gamma}}$$

Internal energy
$$\tilde{W}_{m} = \frac{1}{\hat{\gamma}} [(m_{f}\Gamma_{f} + m\Gamma)c^{2} - (m + m_{f})\Gamma_{m}^{0}c^{2}] + \Gamma W'$$

After a transitory phase, the merged shell propagates in the CBM and it is decelerated to the BM solution \longrightarrow

- Classic afterglow radiation from the merged shell
- Same scaling relations for the Lorentz factor and the radius as the slow shell

Afterglow with Jump - Neutrino and Photon Energy Fluxes

Forward-Reverse Shock system

Conservation of energy, momentum and number of particles needed: Two shocks

LFBOTs: Theoretical Constraints

Boundary conditions in the jet head

Guarini, Tamborra and Margutti, ApJ (2022)

LFBOTs: Detection Perspectives

