MINERvA: Results and Prospects

Deborah Harris

NOW 2022

September 6, 2022

Why is this talk in a "Future Neutrino Oscillation Experiment" session?

- MINERvA is a dedicated cross section experiment
- Ran in the NuMI beamline from 2009 2019
- As we heard yesterday, lessons learned from MINERvA are already being incorporated in today's oscillation experiments
- Focus of this talk:

Recent & upcoming measurements and how they will inform future oscillation experiments

Why Oscillation Experiments need Cross Section Experiments

- Oscillation experiments want to measure $P(E_v)$ but are stuck with imperfect measures of E_v
 - Cerenkov Detectors: have to reconstruct using lepton kinematics, and an assumption about what kind of process produced the lepton
 - This works great on free nucleons at rest but...
 - Can't afford hydrogen bubble chambers for far detectors
 - Nucleons have fermi motion, long/short range correlations
 - Other processes can mimic the process you are assuming
 - Calorimetric/Tracking Detectors: not all final particles' energies can be measured
 - Neutrons barely leave any energy
 - Neutral pions leave total energy, but charged pions only leave their kinetic energy
- Backgrounds still need to be predicted well

Medium Energy V_{μ}

Medium Energy V_{II}

Low Energy V_{μ}

····· Low Energy V_{μ}

Enter MINERvA

- Data with neutrinos and antineutrinos
- Ran with two different energy beams
- Targets of He, C, H2O, Fe, Pb and CH

160×10¹⁵

140

120

ν

Module numbe

5

Mean x: 1239.0

New Flux from Neutrino-Electron Scattering

Phys.Rev.D 100 (2019) 9, 092001; Phys.Rev.D 104 (2021) 9, 092010, + 1 more soon to appear on the arXiv

- Neutrino-electron elastic scattering is a standard candle for neutrino interactions.
- Using this reaction 6 GeV neutrino and anti-neutrino beams, and using inverse muon decay, flux uncertainties are ~3.3% and 4.7%!
- Combined fit paper in preparation (L. Zazueta et al...)

Mean x: 1338.0

The "MINERvA Tune"

- In our 3GeV data, we found discrepancies compared to generators (GENIE) out of the box that surpass the standard "GENIE" uncertainties.
- MINERvA has developed a model tune in use today that better describes its own CH data than do untuned generators, based on
 - Theory and models implemented in GENIE 2.12.x \rightarrow 3.0.x,
 - D₂ bubble chamber data (in particular for non-resonant pion production),
 - and MINERvA's own measurements
- The tuned model allows MINERvA to more realistically assess uncertainties in its own measurements. It is also available for use by other experiments, such as neutrino oscillation experiments.

New "low q" Results from Medium Energy Data

- Look at inclusive sample of events as function of energy AND momentum transferred
- New data sample still sees need for 2p2h
- Use broader range of "q"
- Several new models of 2p2h process are now available for comparison (NuWRO, SUSAv2)

M. Ascencio et al, *Phys.Rev.D* 106 (2022) 3, 032001

$CCO\pi E_{v,reconstructed}-E_{lepton}$ in T2K vs NOvA

D. Ruterbories et al, Phys. Rev. Lett. 129 (2022) 2, 021803

- Reminder from K. McFarland's talk yesterday: In T2K (and future Hyper-K) p_T of lepton is used to measure the recoiling energy by two body quasielastic kinematics.
- In NOvA and DUNE, the visible recoil is measured. Liquid Argon TPC's do both.
- We compare the two types of energy measures: recoil in bins of q_0^{QE}
- Agreement with the model is poor
 - Events where the QE hypothesis says there should be lots of proton energy added, but MINERvA does not see that energy!

Looking at the same data but as CCO $\pi \Sigma T_p$, p_T , p_{\parallel}

- MINERVA
- The biggest change in cross-section, though not in the ratio, are the small deviations just above the QE peak. Maybe MINERvA's tune was affected by non- $CC0\pi$ events?
- Low p_T high ΣT_p events predicted by the model as 2p2h and stopped pions are almost completely absent in the data.
- Highest $p_T \text{ low } \Sigma T_p$ events, events where the leading proton's energy ends up as neutrons through final state interactions, are also very overpredicted.

Looking at the same data but as CCO $\pi \Sigma T_p$, p_T , p_{\parallel}

- The biggest change in cross-section, though not in the ratio, are the small deviations just above the QE peak. Maybe MINERvA's tune was affected by non- CCOπ events?
- Low p_T high ΣT_p events predicted by the model as 2p2h and stopped pions are almost completely absent in the data.
- Highest $p_T \log \Sigma T_p$ events, events where the leading proton's energy ends up as neutrons through final state interactions, are also very overpredicted.

D. Harris, MINERvA: Results and Propsects

Looking at the same data but as CCO $\pi \Sigma T_p$, p_T , p_{\parallel}

- The biggest change in cross-section, though not in the ratio, are the small deviations just above the QE peak. Maybe MINERvA's tune was affected by non- CCOπ events?
- Low p_T high ΣT_p events predicted by the model as 2p2h and stopped pions are almost completely absent in the data.
- Highest $p_T \text{ low } \Sigma T_p$ events, events where the leading proton's energy ends up as neutrons through final state interactions, are also very overpredicted.

What else can you do with MINERvA's Medium Energy Data set?

- Huge statistics also means ability to measure exclusive processes off nuclear targets
 - "Scintillator target" is 8.3 tons total
 - Lead and Iron are about 1 ton each
 - Water target is 0.4 tons, but had to run ½ the time with water target empty for subtraction
 - C is 0.16 tons, used as cross-check

MINERvA's Nuclear Targets

6 September 2022

13

MINERvA's Nuclear Targets

6 September 2022

14

Coherent Pion Production vs A!

• NC channel is background to v_{e} appearance

1.05E+21 POT Fe

Fe target

⁵⁶Fe)

 ${d\sigma\over dE_{\pi}}$ (10⁻³⁹ cm² / GeV

 Paper almost ready to submit, but see for yourself: (A. Ramirez, FNAL seminar) https://vms.fnal.gov/asset/detail?recid=1965797

E_π [GeV]

 ν_{μ} + C $\rightarrow \mu^{-}$ + π^{+} + C

MINERVA 1.05E+21 POT CH target

 $rac{d\sigma}{dE_{\pi}}$ (10⁻³⁹ cm² / GeV / 12 C)

A preview of 6 GeV CCO π Lepton Kinematics on targets 4.5 < Muon P_u/GeV < 5.5

- Agreement with CH helped by MINERvA's 3GeV "tune"
- There is a large predicted cross-section in the more neutron rich targets; but within this model that prediction doesn't explain the changes.
- Overpredicted processes (stopped pions) on proton?
 2p2h scaling?
- Take ratios to cancel flux and muon energy uncertainties...

Fermilab

6 GeV CCO π Ratios A/CH

Ratio of A / CH

- Direct measurement of A-dependence in CC0 π scattering!
- Plot shows per nucleon cross section in data (points) and MINERvA's "tune" in GENIE
- There's work to be done
- What about per neutron cross section, then do Pb and Fe agree?
- Paper in preparation (J. Kleykamp et al...)

6 GeV CCO π Ratios A/CH per neutron

Corrected Ratio of A to CH Result

Neutron Fraction

- Direct measurement of A-dependence in CCO π scattering!
- Plot shows per nucleon cross section in data (points) and MINERvA's "tune" in GENIE
- There's work to be done
- What about per neutron cross section, then do Pb and Fe agree?
- Paper in preparation (J. Kleykamp et al...)

Interpretation

- Reminder from K.McFarland's plenary talk:
 - The charged current incoherent pion versus A data see a deficit that is ~flat vs μ transverse momentum; changes from 0.8 for Fe to 0.5 for Pb relative to the CH Pion production rates
- MINERvA also sees an excess of $CC0\pi$ -like events in the regions you expect pion absorption!
- Message to NOW2022: more energy may be missing from your final state than your generators are predicting...

0.5

Transverse Kinematic Imbalance (TKI) in CCO π

- Consider the transverse kinematic imbalance of the leading proton and the lepton in CC0π events.
- Predictions are simple for free nucleons at rest!
- Differences can be due to:
 - Multi-nucleon correlations
 - Pion absorption
 - Fermi motion
 - Binding energy

Graphics courtesy X.-G. Lu, v2022

Transverse Kinematic Imbalance (TKI) in CCO π

- Consider the transverse kinematic imbalance of the leading proton and the lepton in CC0π events.
- Predictions are simple for free nucleons at rest!
- Differences can be due to:
 - Multi-nucleon correlations
 - Pion absorption
 - Fermi motion
 - Binding energy

Graphics courtesy X.-G. Lu, v2022

Preview: Transverse Kinematic Imbalance vs A

- We can now look at the TKI variables for C, H_2O , Fe, Pb & CH!
- Spoiler alert: GENIE gets Carbon and CH distributions more right than it gets the heavier nuclei, more π absorption as A increases

Conclusions

- MINERvA continues to have a lot to say to current and future oscillation experiments
- Have established a "tune" that gets most of the details of our ~3GeV data right, testing it now on ~6GeV data now
- Have the statistics to pick out exclusive state cross sections vs A
 - Seeing where our improved model falls short
- Many results *a presto*
 - **Comparisons vs A**: CC0 π , CC1 π , CC coherent π
 - Electron Neutrino and Anti-Neutrino "low q" measurements
- Working on a data preservation product so the community can continue to mine this data set for years to come!

Grazie a tutti!

Backup Slides

Looking at CCO π in 3 dimensions ΣT_p , p_T , p_{\parallel}

D. Harris, MINERvA: Results and Propsects

Phys.Rev.Lett. 129 (2022) 2, 021803

6 September 2022

- Lots to see!
 - The trends are independent of p_{\parallel} , so not strongly energy dependent.
- Many processes contribute to "CC0π "
 - CCQE
 - 2p2h

DIS

Resonance+ π absorption

Energy deposits in MINERvA

 This is not so different from other tracking/calorimetric v detectors

 $E_{avail} \equiv (Proton and \pi^{\pm} KE)$ +(E of other particles except neutrons)

Figure courtesy P. Rodrigues

‡Fermilab