Monitored neutrino beams: NP06/ENUBET

F. Pupilli (INFN – Padova)

Istituto Nazionale di Fisica Nucleare

60 physicists 13 institutions

* CENBG

université *BORDEAUX

on behalf of the ENUBET Collaboration

ERC Consolidator grant (P.I. A. Longhin - 2016-2022)

CERN Neutrino Platform Experiment (NP06 - 2019-2024)

Part of the Physics Beyond Colliders (PBC) initiative

https://www.pd.infn.it/eng/enubet/

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

The role of cross sections in the precision era

Full exploitation of data from future oscillation programs (DUNE, Hyper-K) strongly dependent on the control of **systematics**

- \rightarrow statistics not an issue (large θ_{13} , superbeams, huge mass)
- → the well known near-to-far ratio technique challenged by the required precision:
 - difference in angular acceptance
 - large pile-up effects at ND
 - different detector technology for the two sites

Fundamental a better knowledge of σ_{vu} and σ_{ve}

The goal of ENUBET: design a narrow-band neutrino beam to measure

- neutrino flavor composition and cross-section at 1% precision level
- neutrino energy at 10% precision level

From the European Strategy for Particle Physics Deliberation document:

To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.

ENUBET: the first monitored neutrino beam

Hadron production, beamline geometry and focusing, POT

- → ERC project focused on the determination of the v_e flux by measuring K_{e3} positrons
- NP06 CERN project is extending the measurement to muons from K and π to fully monitor the v_{μ} flux

The ENUBET beamline

Fully static focusing (by quadrupole triplet) ⇔ coupled to slow proton extraction (assuming 4.5x10¹³ – 400 GeV pot in 2 s)

Large bending angle of 14.8°:

Better collimated beam + reduced muon background + reduced ν_e from early decays

Transfer line design:

- optics optimized with TRANSPORT for mesons with p=8.5 GeV ± 10% (narrow-band beam)
- particle tracking and interactions simulated with G4Beamline
- doses and irradiation studies with FLUKA, absorbers and rock volumes included
- optimized graphite target 70 cm long, 6 cm diameter (dedicated studies on geometry and materials)
- tungsten foil after proton target to suppress positron background
- tungsten alloy (Inermet 180) @ tagger entrance to suppress backgorund

Full facility implemented in GEANT4: Control over all parameters Access to particle histories Assessment of the v flux systematics

Transfer line

Decay tunnel

Length of 40 m

Radius of 1 m

Normal conducting magnets

(1.8 T, total bending angle of 14.8°)

• Small beam spot at tunnel entrance

kept short to minimize early K decays

quadrupole + 2 dipoles

$v_e^{\ cc}$ spectrum @ detector

Assumptions:

- @ SPS (400 GeV) with 4.5x10¹⁹ pot/year
- 500 tons LAr v-det (6x6 m²) @ 50 m from h-dump

 $\rightarrow 10^4 \, \nu_e{}^{\text{CC}}$ interactions in ~3y of data taking

Taggable component:

About 80% of total v_e^{cc} is produced by decays in the tunnel (above 1 GeV)

Non-taggable components:

- Below 1 Gev: main component produced in p-dump
 - clear separation from taggable ones (energy cut)
 - further improvements optimizing p-dump position
- Above 1 GeV: contributions from straight section before instrumented decay tunnel and h-dump
 - rely on simulation for this component

v_{μ}^{cc} spectrum @ detector

Further details in:

F. Acerbi et al., CERN-SPSC-2018-034

 30% E_v resolution in Hyper-K energy range (DUNE optimized TL → 8.5 GeV meson beam)

✓ Ongoing R&D: Multi-Momentum TL (4.5,6,8.5 GeV)
 → cover Hyper-K and DUNE r.o.i. by changing magnetic fields only

NOW2022 - 6/09/2022

Beamline optimization studies

An optimization campaign is ongoing:

- Goal: further improvement of the π/K yield at tunnel entrance while keeping background at low level
- Strategy: scan parameter space of beamline to maximize FOM
- Tools:
 - ✓ full facility implemented in GEANT4
 → control with external cards all parameters
 - systematic optimization within framework
 based on genethic algorithm

Figure of merit (FOM) = Signal/Background

- Signal: K @ tagger entrance
- Bkg: $e^+ \& \pi$ hitting tunnel walls (excluding the ones from K decays in tunnel)

Rates @ Tunnel entrance for 400 GeV POT	π^+ [10^{-3}]/POT	<i>К</i> ⁺ [10 ⁻³]/РОТ
Design	4.13	0.34
Optimized	5.27	0.44
Background hitting tunnel walls	e ⁺ [10 ⁻³]/K ⁺	$\pi^+[10^{-3}]/K^+$
Background hitting tunnel walls Design	e ⁺ [10 ⁻³]/K ⁺ 7	π ⁺ [10 ⁻³]/K ⁺ 59

- About 28% gain in flux \rightarrow 2.4 y to collect 10⁴ ν_e^{CC}
- Reduced backgrounds, but similar shape to signal
 - → next step: improve FOM definition (include sgn/bkg distributions)

NOW2022 - 6/09/2022

Preliminary

The instrumented decay tunnel (I)

etno Det

Requirements:

- Allow e⁺/π^{±,0} separation in the GeV energy region
- **Suppress** background from **beam halo** (μ, γ, non collimated hadrons)
- Sustain O(MHz) rate and **suppress pile-up effects** (recovery time ≤ 20 ns)
- **Doses**: <10¹⁰ n/cm² at SiPMs, 0.1Gy at scintillator

The instrumented decay tunnel (II)

Prototype of sampling calorimeter with <u>lateral WLS-fibers</u> for light collection

Tested during 2018 test-beam runs @ CERN PS-T9

Large area (4x4 mm²) SiPM for 10 WLS (one LCM)

SiPM installed outside calorimeter, above shielding: reduce (factor 18) neutron radiation damage and aging

Status of prototyping:

- Lateral readout calorimeter prototype successfully tested
- Photon veto tested
- Custom digitizer: in progress

Choice of technology finalized and cost-effetive!

Lepton identification (I)

- ✓ Full GEANT4 simulation of the detector: validated by prototype tests @ CERN; hit-level detector response; pile-up effects included (waveform treatment in progress); event building and PID (2016-2020)
- Large angle muons and positrons from kaon decays identified exploiting the energy pattern in the tagger
- Event selection based on 19 discriminating variables for positrons (13 for muons) employed by a Neural Network

Lepton identification (II)

$\pi_{_{u2}}$ muon reconstruction to constrain low energy $\nu_{_{u2}}$

Low angle muons: out of tagger acceptance \rightarrow need muon stations after the hadron dump

Possible candidate: fast Micromega detector with Cherenkov radiator (PIMENT project)

Hottest detector (upstream station): cope with ~2 MHz/cm² muon rate and 10¹² 1 MeV-n_{eq}/cm²

Exploit:

- Correlation btw number of transversed stations (µ energy ٠ from range-out) and v energy;
- Difference in distribution to disentangle signal from halo-٠ muons

Detector technology: constrained by muon and neutron rates

Systematics: punch through, non uniformity, efficiency, halo-µ

Work in progress

v-flux: assessment of systematics

Used hadro-production data from NA56/SPY experiment to:

- reweight MC lepton templates and get their nominal distributions
- compute lepton templates variations using multi-universe method

v-flux: impact of hadro-production systematics

Achieved ENUBET goal of 1% systematics from lepton rates monitoring

The tagger demonstrator

- Detector prototype under contruction to demonstrate:
 - Performance / scalability / cost effectiveness

Test beam @ CERN-PS in october 2022

- > 1.65 m longitudinal & 90° in azimuth (central 45° instrumented)
- > 75 layer of: iron (1.5 cm thick) + scintillator (0.7 cm thick) → 15x3x25 LCMs
- Modular design: can be extended to a full 2π object by joining 4 similar detectors (minimal dead regions)
- New lateral readout scheme with frontal grooves instead of lateral ones:
 - driven by large scale scintillator manufacturing: safer production and more uniform light collection
 - validated by GEANT4 optical simulation
- Scintillators: produced by SCIONIX (EJ-204) and milled by local comany
- ENUBINO: pre-demonstrator prototype with 3 LCM tested @ CERN to study uniformity and efficiency

4 extensible legs: calorimeter tilting

The tagger demonstrator: mechanical structure

Construction @ INFN - Legnaro National Laboratory

Light-tight cover

F. Pupilli

NOW2022 - 6/09/2022

Play (k)

The tagger demonstrator: scintillator tiles

EJ-204 scintillator tiles (3x3 cm²) with grooves for WLS fibers

Fiber gluing (EJ-500 optical cement)

Tile painting (EJ-510 TiO₂ reflecting painting)

Tile assembling on arcs and fiber routing

NOW2022 - 6/09/2022

The tagger demonstrator: fiber routing and electronics

Fiber concentrators for bundling and routing to SiPMs

Custom design

Produced with 5 consumer level 3D printers

Custom + Commercial electronics

Commercial read-out board (CAEN A5202)

Custom digitizer

Custom interface board to connect 5 FEB (60 ch) to 1 A5202 (64 ch)

NOW2022 - 6/09/2022

(SiPMs + Low V)

Summary and next steps

> Final design of beam transfer line in place, fine-tuning in progress:

- static transfer line: $10^4 v_e^{CC}$ events in ~3 years (@ SPS)
- ongoing optimization of transfer line parameters with genetic algorithm
- multi-momentum beamline ongoing R&D: DUNE & Hyper-K optimized

> Design of the decay tunnel instrumentation finalized:

- prototype test-beams @ CERN: technology validation
- building final demonstrator to be tested @ CERN-PS in october 2022

Detector simulation and PID studies:

- developed full GEANT4 simulation of calorimeter
- finalizing waveform simulation to fully assess the pile-up effects
- very good PID performance on both positron and muon reconstruction

Systematics: hadro-production and beyond

- achieved 1% systematic goal due to hadro-production with lepton monitoring
- assess sub-leading systematics due to detector effects and beamline parameters

Looking ahead

ERC project (2016-2022) is on schedule and in the last stage

CERN site-dependent implementation (SPS+ProtoDUNE) within NP06/ENUBET (2019-2024) in PBC framework

2023-2024: delivery of Conceptual Design Report with physics and cost definition

Experimental proposal expected in 2024

Additional material

Irradiation studies

A detailed FLUKA simulation of the setup has been implemented (includes proper shielding around the magnetic elements)

Neutron fluence provided by FLUKA guided the design of the detector tecnology for tagger:

→ SiPM outside the calorimeter abobe a 30 cm BPE shielding

Irradiation studies

Horn based focusing

A. Branca slide @ ICHEP2022

- successfully implemented;
- optimized down to 10 ms length @ 10 Hz; From simulation studies:
- 3 to 10 ms pulse length can be reached;

Horn optimization: search for best shape & current values to maximize flux

- developed a dedicated optimization algorithm based on Genetic ٠ Algorithm;
- tests show that a FOM* 3x static beamline can be achieved;
- NEXT: further studies on dedicated beamline fine-tuned for horn; ٠

*FOM = # of K⁺ within momentum bite focused at first quadrupole after the horn => beamline independent

A. Branca

ICHEP2022 - 07/07/2022

et Det

Multi-Momentum Beamline

A parallel study ongoing for the hadron beamline to focus 8.5, 6 or 4 GeV/c secondaries by changing the magnetic fields only

Layout summary:

- First quadrupole distance from the target: 30 cm
- Target tilted by 1° w.r.t. beamline to reduce background and primary re-interaction
- 5 mm W absorber after collimation \rightarrow to reduce the positrons bgk
- Primary Protons Momentum: 400 GeV
- Secondary Momenta: 8.5 GeV 6 GeV 4 GeV

Add flexibility and allow a set of different neutrino spectra from Hyper-K to Dune regions of interest

$\nu_{\mu}{}^{cc}$ spectrum @ detector

ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

K_{e3} positron identification

Full GEANT4 simulation of the detector

- hit-level detector response
- validated by prototype tests @ CERN

Analysis chain:

1) Event builder:

- start from event "seed" (LCM with E>28 MeV in first layer) to preselect e.m. showers
- cluster energy deposits compatible in space (-5< ϕ_{seed} <5 ; -3<z = <10) and time (-1< Δ t<1 ns)
- associate T0 hits on the 8 upstream tiles wrt to seed in the same ϕ sector (Δ t within 1 ns)

Waveform simulation and reconstruction

Software framework implemented to simulate tagger response at single channel level → fully realistic treatment of pile-up effects

