

Long-Baseline Neutrino Oscillation Sensitivities at Hyper-Kamiokande

& Impact of Intermediate Water Cherenkov Detector

Tailin Zhu On behalf of the Hyper-Kamiokande Collaboration

(t.zhu20@imperial.ac.uk)

September 6, 2022

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy)

Hyper-Kamiokande

C gigantic detector to confront elementary particle unification theories and the mysteries of the Universe's evolution

HK Sensitivities and Impact of IWCD

Hyper-Kamiokande

HK Sensitivities and Impact of IWCD

Hyper-Kamiokande

HK Sensitivities and Impact of IWCD

Neutrino Oscillation Physics

• Described by the PMNS matrix under 3 Dirac neutrino mixing hypothesis

$$U_{i\alpha} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{ij} \equiv \cos \theta_{ij} \text{ and } s_{ij} \equiv \sin \theta_{ij}$$

$$\cdot \theta_{12} = 33.6^{\circ} \pm 0.8^{\circ} \text{ (solar)}$$

$$PDG2022$$

$$\cdot \theta_{13} = 8.3^{\circ} \pm 0.2^{\circ} \text{ (reactor)}$$

$$\cdot \theta_{23} = 45.6^{\circ} \pm 2.3^{\circ} \text{ (accelerator/atmospheric)} \\ - \ln \theta_{23} = 45^{\circ}? \text{ If not, what is the octant of } \theta_{23}?$$

$$\cdot \delta_{CP} \text{ unknown} \\ - \text{Any CP violation in the lepton sector ?}$$

$$\cdot \text{ What is the neutrino mass ordering ?}$$

• Need precise measurements to fully understand neutrino oscillations

HK Planned Improvements

- Upgraded ND280 detector
- Jaafar Chakrani on 4:00pm, 6th Sep
- New Intermediate Water Cherenkov detector (IWCD)
 - 300t fiducial volume with excellent electron identification power will provide high statistics v_e and \overline{v}_e samples
 - Off-axis fluxes will provide v_{μ} samples with spectra peaked at different energies having different neutrino interaction types to constrain neutrino cross section better

Reduce the impact of flux and cross-section uncertainties on neutrino oscillation measurements

- Approx. 20x event rate compared to the T2K experiment
 - Twice the J-PARC neutrino beam power (1.3 MW)
 - 8x far detector fiducial volume (188 kt)
- Improved photo sensors and calibration at the far detector

HK Planned Improvements

- Upgraded ND280 detector
- <u>Jaafar Chakrani</u> on 4:00pm, 6th Sep
- New Intermediate Water Cherenkov detector (IWCD)
 - 300t fiducial volume with excellent electron identification power will provide high statistics v_e and \overline{v}_e samples
 - Off-axis fluxes will provide v_{μ} samples with spectra peaked at different energies having different neutrino interaction type to constrain neutrino cross section better

Reduce the impact of flux and cross-section uncertainties on neutrino oscillation measurements

- Approx. 20x event rate compared to the T2K experiment
 - Twice the J-PARC neutrino beam power (1.3 MW)
 - 8x far detector fiducial volume (188 kt)
- Improved photo sensors and calibration at the far detector Tailin Zhu, NOW 2022

HK Sensitivities and Impact of IWCD

HK Oscillation Analysis and Sensitivities

Tailin Zhu, NOW 2022

HK Oscillation Analysis Methods

• 5 event samples: 4 CCQE-like + 1 CC1 π -like; 2.7E22 POT over 10 years, $v: \overline{v}$ - mode = 1:3

Tailin Zhu, NOW 2022

HK Sensitivities and Impact of IWCD

HK e-like Event Samples

Expecting

- $\sim 2700 v_e$ events
- ~ 1600 \overline{v}_e events
- Asssuming
 - NO
 - $\sin^2\theta_{13} = 0.0218$
 - $\sin^2\theta_{23} = 0.528$
 - $\delta_{CP} = 0$
 - $\Delta m_{32}^2 = 2.509 \text{E-} 3 \text{eV}^2$
- Sensitive to δ_{CP} from ν_µ ν_e appearance spectra comparing number of events in ν and ν̄ mode

v-Mode Beam

HK Sensitivities and Impact of IWCD

11

Effect of δ_{CP} HK 10 years (2.7E22 POT 1:3 v:v) HK 10 years (2.7E22 POT 1:3 v:v) 220 Number of Events Number of Events $-\delta_{CP} = 0$ $-\delta_{CP} = 0$ 250 200 E $\delta_{CP} = +\pi/2$ $\delta_{CP} = +\pi/2$ 180E 200 160E $\delta_{CP} = -\pi/2$ $\delta_{CP} = -\pi/2$ 140E $\delta_{CP} = +\pi$ $\delta_{CP} = +\pi$ 120E 150 100E 80 | 100 60 | 40Ē 50 v-Mode Beam \overline{v} -Mode Beam 20F 0 0.4 0.2 0.8 0.2 0.6 0.8 0.40.6 1.2 \overline{v} beam 12 v beam v Reconstructed Energy (GeV) v Reconstructed Energy (GeV) 1-ring e-like + 0 decay e 1-ring e-like + 0 decay e HK 10 years (2.7E22 POT 1:3 v:v) HK 10 years (2.7E22 POT 1:3 v:v) 150 150 Difference from $\delta_{CP} = 0$ (events) Difference from $\delta_{CP} = 0$ (events) \bullet $\delta_{CP} = +\pi/2$ $\delta_{CP} = +\pi/2$ $\delta_{CP} = -\pi/2$ \bullet $\delta_{CP} = -\pi/2$ 100 100 $-\delta_{CP} = +\pi$ $\delta_{CP} = +\pi$ 50 50 -50-50-100-100-150 0 -1500.2 0.4 0.6 0.8 1.2 0.2 0.4 0.6 0.8 1.2 1 v beam \overline{v} beam v Reconstructed Energy (GeV) 1-ring e-like + 0 decay e v Reconstructed Energy (GeV) 1-ring e-like + 0 decay e

- Expecting
 - $\sim 2700 v_e$ events
 - $\sim 1600 \, \overline{v}_e \, \text{events}$
 - Asssuming
 - NO
 - $\sin^2\theta_{13} = 0.0218$
 - $\sin^2\theta_{23} = 0.528$
 - $\delta_{CP} = 0$
 - $\Delta m_{32}^2 = 2.509 \text{E-} 3 \text{ eV}^2$
- Sensitive to δ_{CP} from $\nu_{\mu} \rightarrow \nu_{e}$ appearance spectra comparing number of events in ν and $\overline{\nu}$ mode

Tailin Zhu, NOW 2022

HK Sensitivities and Impact of IWCD

12

Expecting ٠

- $\sim 2700 v_e$ events
- ~ 1600 \overline{v}_e events
- Asssuming
 - NO
 - $\sin^2\theta_{13} = 0.0218$
 - $\sin^2\theta_{23} = 0.528$
 - $\delta_{CP} = 0$
 - $\Delta m_{32}^2 = 2.509 \text{E-} 3 \text{ eV}^2$

Sensitive to $\sin^2\theta_{23}$ and ٠ $\Delta \mathfrak{m}_{32}^2$ from v_u disappearance and v_e **appearance** spectra shape in v and \overline{v} mode

Tailin Zhu, NOW 2022

HK μ-like Event Samples

- Expecting
 - ~ 9300 v_{μ} events
 - ~ 12300 $\overline{\nu}_{\mu}$ events
 - Asssuming
 - NO
 - $\sin^2\theta_{13} = 0.0218$
 - $\sin^2\theta_{23} = 0.528$
 - $\delta_{CP} = 0$
 - $\Delta m_{32}^2 = 2.509E-3$ eV²

• Sensitive to $\sin^2\theta_{23}$ and $\Delta \mathfrak{m}_{32}^2$ from v_{μ} disappearance and v_e appearance spectra shape in v and \overline{v} mode

HK Sensitivities and Impact of IWCD

Effect of $sin^2\theta_{23}$

- Expecting
 - ~ 9300 v_{μ} events
 - ~ 12300 \overline{v}_{μ} events
 - Asssuming
 - NO
 - $\sin^2\theta_{13} = 0.0218$
 - $\sin^2\theta_{23} = 0.528$
 - $\delta_{CP} = 0$
 - $\Delta m_{32}^2 = 2.509 \text{E-3}$ eV²
- Sensitive to $\sin^2\theta_{23}$ and $\Delta \mathfrak{m}_{32}^2$ from v_{μ} **disappearance** and v_e appearance spectra shape in v and \overline{v} mode

Tailin Zhu, NOW 2022

- T2K 2018 model
 - Flux error from hadron-production + J-PARC beamline
 - Cross-section error from neutrino interaction models
 - Detector + FSI + SI describes the detector response systematics
 - Near detector constraints applied to the flux + cross section uncertainties
- Improved systematics for HK
 - Scaling the T2K 2018 model with the increase of statistics and sensitivities from ND280 upgrade and IWCD
 - No parameter was allowed to have an uncertainty of less than 1%
 - Adding new systematic parameters
- Systematic uncertainties are parameterized based on the v flavor, v beam mode, v interaction properties, event type, energy scale, etc, against the true (near detector constraints) and reconstructed (far detector constraints) v energies.
 - Details see backup slides

- T2K 2018 model
 - Flux error from hadron-production + J-PARC beamline
 - Cross-section error from neutrino interaction models
 - Detector + FSI + SI describes the detector response systematics
 - Near detector constraints applied to the flux + cross section uncertainties
- Improved systematics for HK
 - Scaling the T2K 2018 model with the increase of statistics and sensitivities from ND280 upgrade and IWCD
 - No parameter was allowed to have an uncertainty of less than 1%
 - Adding new systematic parameters
- Systematic uncertainties are parameterized based on the v flavor, v beam mode, v interaction properties, event type, energy scale, etc, against the true (near detector constraints) and reconstructed (far detector constraints) v energies.
 - Details see backup slides

- T2K 2018 model
 - Flux error from hadron-production + J-PARC beamline
 - Cross-section error from neutrino interaction models
 - Detector + FSI + SI describes the detector response systematics
 - Near detector constraints applied to the flux + cross section uncertainties
- Improved systematics for HK
 - Scaling the T2K 2018 model with the increase of statistics and sensitivities from ND280 upgrade and IWCD
 - No parameter was allowed to have an uncertainty of less than 1%
 - Adding new systematic parameters
- Systematic uncertainties are parameterized based on the v flavor, v beam mode, v interaction properties, event type, energy scale, etc, against the true (near detector constraints) and reconstructed (far detector constraints) v energies.
 - Details see backup slides

HK Systematic Uncertainties

• Error on event rate due to systematic uncertainties

- Flux and cross sections is the main contribution to the v_e/\bar{v}_e uncertainty
 - Also a small fraction from the far detector systematics
 - Aims to reduce total systematics by approx. 50%
- $v_{\mu}(\overline{v}_{\mu})$ uncertainty is also expected to be reduced by 75%

	1-Ring	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	Node	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like	
Flux + Cross section	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%	
Detector + FSI + SI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%	
All systematics	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%	

Improved HK Errors

	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	Node	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like
Flux + Cross section	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%
Detector + FSI + SI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%
All systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%

T2K 2018 Errors

HK Systematic Uncertainties

- Error on event rate due to systematic uncertainties
- Flux and cross sections is the main contribution to the $v_{\rm e}/\overline{v}_{\rm e}$ uncertainty
 - Also a small fraction from the far detector systematics
 - Aims to reduce total systemics by approx. 50%
- $v_{\mu}(\overline{v}_{\mu})$ uncertainty is also expected to be reduced by 75%

				=			
	1-Ring	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	Node	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like	
Flux + Cross section	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%	
Detector + FSI + SI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%	
All systematics	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%	

Improved HK Errors

	1-Ring v_{μ} -like					
Error source	Node	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like
Flux + Cross section	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%
Detector + FSI + SI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%
All systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%

T2K 2018 Errors

Error on event rate due to systematic uncertainties

HK Systematic Uncertainties

- Error on event rate due to systematic uncertainties
- Flux and cross sections is the main contribution to the v_e/\overline{v}_e uncertainty
 - Also a small fraction from the far detector systematics
 - Aims to reduce total systemics by approx. 50%
- $v_{\mu}(\overline{v}_{\mu})$ uncertainty is also expected to be reduced by 75%

na u liko		
1-Ring v _e -like		
ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like	
4.99%	4.52%	
17.77%	2.06%	
18.49%	4.95%	
	ν-Mode CC1π- like 4.99% 17.77% 18.49%	

Improved HK Errors

	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	v- Mode	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like
Flux + Cross section	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%
Detector + FSI + SI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%
All systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%

T2K 2018 Errors

Tailin Zhu, NOW 2022

Error on event rate due to systematic uncertainties

T2K 2018 Frrors

HK Systematic Uncertainties

- Error on event rate due to systematic uncertainties
- Flux and cross sections is the main contribution to the v_e/\overline{v}_e uncertainty
 - Also a small fraction from the far detector systematics
 - Aims to reduce total systemics by approx. 50%
- $v_{\mu}(\overline{v}_{\mu})$ uncertainty is also expected to be reduced by 75%

				=			
	1-Ring	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	Node	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	v-Mode CC1π- like	v-Mode/v- Mode CCQE-like	
Flux + Cross section	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%	
Detector + FSI + SI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%	
All systematics	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%	

Improved HK Errors

	1-Ring	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	Mode	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	v-Mode CC1π- like	v-Mode/v- Mode CCQE-like	
Flux + Cross section	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%	
Detector + FSI + SI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%	
All systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%	

Tailin Zhu, NOW 2022

Error on event rate due to systematic uncertainties

δ_{CP} Precision

- Uncertainty on $\delta_{\rm CP}$ plotted as a function of beam running years
- Precise measurement of $\delta_{\rm CP}$ is available
- With 10 years of operation, can achieve 1σ error for δ_{CP} of 19° (6.5°) in the case of true $\delta_{CP} = -90^{\circ} (0^{\circ})$

CP Violation Sensitivity

- With 10 years of operation, CPV is expected to be established at 5(3)σ for 61%(77%) of true δ_{CP} values in the case of the improved systematics
- Sensitive to the 1-ring elike v/v uncertainty, which are reduced from 4.9% to 2.7% assuming improved systematics

CP Violation Sensitivity

- With 10 years of operation, CPV is expected to be established at 5 (3)σ for 61% (77%) of true δ_{CP} values in the case of the improved systematics
- Sensitive to the 1-ring elike v/v uncertainty, which are reduced from 4.9% to 2.7% assuming improved systematics

Effect of Atmospheric Neutrinos

- Joint-fit of HK long-baseline and atmospheric neutrinos
- Adding atmospheric neutrinos can drive the sensitivity to δ_{CP} in excluding the CP conservation

Effect of Atmospheric Neutrinos

- Joint-fit of HK long-baseline and atmospheric neutrinos
- Adding atmospheric neutrinos can di
- Adding significance to reject the wrong mass ordering
- Sensitive to mass ordering at 3.8 ~ 6.2σ after 10 years

HK Sensitivities and Impact of IWCD

Δm^2_{32} Uncertainty

- Δm_{32}^2 uncertainty for different values of true $\sin^2 \theta_{23}$, atmospheric neutrinos sample not included
- Sensitive to µ-like + e-like uncertainties, and are reduced by improved systematics
- With 10 years of operation, 1σ error can achieve 0.35% with the improved systematics, reduced by a factor of 3.6 comparing to current error (PDG)

HK Sensitivities and Impact of IWCD

θ_{23} Octant Sensitivity

- Wrong θ_{23} octant exclusion over true $\sin^2\theta_{23}$, atmospheric neutrinos sample not included
- Sensitive to μ -like + e-like uncertainties, and are reduced by improved systematics
- After 10 years, values of true $\sin^2\theta_{23} < 0.47$ and true $\sin^2\theta_{23} > 0.55$ can be excluded at 3σ

HK Sensitivities and Impact of IWCD

Impact of IWCD on HK Sensitivities

Tailin Zhu, NOW 2022

The Intermediate Water Cherenkov Detector

- Vertically movable Water Cherenkov detector
- Approx. 500 mPMTs to improve vertex resolution
 - High voltage and readout electronics
 - Good optical contact between acrylic dome and PMTs with optical gel

NuPRISM Concept for IWCD

- Vertically movable Water Cherenkov detector
 - Sample different flux positions
 - Scan mean v energies from 0.4 GeV (4°) to 1 GeV (1°)
 - Linear combination techniques
 - Information on neutrino interactions can be extracted by fitting weighted true spectrum to reconstructed spectrum
- Measure non-quasi-elastic component with 5% uncertainty

- v_e/\overline{v}_e cross-section uncertainty limits the HK sensitivity on δ_{CP} and $\sin^2\theta_{23}$
 - This is the cross section(σ) described by $[\sigma(v_e) / \sigma(v_\mu)] / [\sigma(\overline{v}_e) / \sigma(\overline{v}_\mu)]$
- IWCD measures the v_e/\bar{v}_e cross section in water by using the 1% intrinsic $v_e(\bar{v}_e)$ contamination in the neutrino beam
- T2K theory-driven v_e/\overline{v}_e cross-section error can be improved by measurements from IWCD in a less model-dependent way
- Implementing the systematics from the IWCD analysis to the HK oscillation analysis framework

- IWCD aims to measure v_e/\overline{v}_e cross section especially in a region of 0.3 GeV < E_v < 0.9 GeV, where E_v = true v energy
- CC non-QE events with higher E, than CCQE events are reconstructed as low energy events at IWCD.
 - These CC non-QE events (a.k.a feed-down events) can affect the cross-section measurement
 - Feed-down component needs to be constrained by v_{μ} events
 - Require v_{μ} events with $E_{\nu} > 0.9$ GeV to be produced
 - Fixed 2.5° off-axis angle has only contains a tiny fraction of those events
 - Larger off-axis angle can increase the fraction, and thus constrain the feed-down events better

- IWCD aims to measure v_e/\overline{v}_e cross section especially in a region of 0.3 GeV $\langle E_v \rangle < 0.9$ GeV, where $E_v = \text{true } v$ energy
- CC non-QE events with higher E, than CCQE events are reconstructed as low energy events at IWCD.
 - These CC non-QE events (a.k.a feed-down events) can affect the cross-section measurement
 - ;Feed-down component needs to be constrained by v_{μ} events
 - Require v_{μ} events with $E_{\nu} > 0.9$ GeV to be produced
 - Fixed 2.5° off-axis angle has only contains a tiny fraction of those events
 - Larger off-axis angle can increase the fraction, and thus constrain the feed-down events better

- IWCD aims to measure v_e/\overline{v}_e cross section especially in a region of 0.3 GeV < E_v < 0.9 GeV, where E_v = true v energy
- CC non-QE events with higher E, than CCQE events are reconstructed as low energy events at IWCD.
 - These CC non-QE events (a.k.a feed-down events) can affect the cross-section measurement
 - Feed-down component needs to be constrained by v_{μ} events
 - Require v_{μ} events with $E_{\nu} > 0.9$ GeV to be produced
 - Fixed 2.5° off-axis angle has only contains a tiny fraction of those events
 - Larger off-axis angle can increase the fraction, and thus constrain the feed-down events better

- IWCD aims to measure v_e/\overline{v}_e cross section especially in a region of 0.3 GeV < E_v < 0.9 GeV, where E_v = true v energy
- CC non-QE events with higher E, than CCQE events are reconstructed as low energy events at IWCD.
 - These CC non-QE events (a.k.a feed-down events) can affect the cross-section measurement
 - Feed-down component needs to be constrained by v_{μ} events
 - Require v_{μ} events with $E_{\nu} > 0.9$ GeV to be produced
 - Fixed 2.5° off-axis angle has only contains a tiny fraction of those events
 - Off-axis angle span can increase the fraction, and thus constrain the feed-down events better

IWCD - Analysis Samples

- 6 Samples: 1R μ , 1Re, 2R π^0 states in both v- and \overline{v} -modes
 - $1R\mu$ sample constrains the total ν cross sections
 - 1Re sample constrains additional parameter describing the difference in the v_{μ} and v_{e} cross sections
 - $2R\pi^0$ constrains the NC π^0 background in the 1Re samples
- Binned in reconstructed kinematic variables and off-axis angle spans

Improving constraint by utilizing both μ-like + e-like samples
 Various parameterizations for the v (v̄) cross-section errors

IWCD - Analysis Samples

- 6 Samples: 1R μ , 1Re, 2R π^0 states in both v- and \overline{v} -modes
 - $1R\mu$ sample constrains the total ν cross sections
 - 1Re sample constrains additional parameter describing the difference in the v_{μ} and v_{e} cross sections
 - $2R\pi^0$ constrains the NC π^0 background in the 1Re samples
- Binned in reconstructed kinematic variables and off-axis angle spans

Improving constraint by utilizing both μ-like + e-like samples
 Various parameterizations for the v (v̄) cross-section errors

IWCD - Analysis Samples

- 6 Samples: 1R μ , 1Re, 2R π^0 states in both v- and \overline{v} -modes
 - $1R\mu$ sample constrains the total ν cross sections
 - 1Re sample constrains additional parameter describing the difference in the v_{μ} and v_{e} cross sections
 - $2R\pi^0$ constrains the NC π^0 background in the 1Re samples
- Binned in reconstructed kinematic variables and off-axis angle spans

- Improving constraint by utilizing both μ -like + e-like samples
 - Various parameterizations for the v (\overline{v}) cross-section errors

IWCD - Cross-section Parameterization

- Systematic uncertainty parameters from the Improved syst. model
- Additional parameterizations based on the improved syst. model
 - Describing the CC v_e + CC \overline{v}_e crosssection uncertainties
 - 1D parameterization in the true v energy space (E_v)
- Constraints on these parameters are produced as a covariance matrix

IWCD - Event Rate Uncertainties

• Error on event rate due to systematic uncertainties:

	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	v- Mode	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like
T2K 2018 systematics	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%
Improved systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%
IWCD 1D Analysis	1.35%	1.25%	2.68%	3.26%	5.37%	2.65%

• Improved by approx. 50% in the $v_{\rm e}/\overline{v}_{\rm e}$ error compared to T2K 2018 model

IWCD - Event Rate Uncertainties

• Error on event rate due to systematic uncertainties:

	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	v- Mode	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	ν-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like
T2K 2018 systematics	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%
Improved systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%
IWCD 1D Analysis	1.35%	1.25%	2.68%	3.26%	5.37%	2.65%

• Improved by approx. 50% in the v_e/\overline{v}_e error compared to T2K 2018 model

IWCD - Sensitivities

- Adding 1D parameters has increased the sensitivity to CP violation effects and θ_{23} octant
- This is a constraint so far based on theory for T2K, but aim to make a direct model-independent measurement with IWCD

IWCD - Analysis Improvements

- v oscillation depends on true v energy (E_v) unknown
- Oscillation measurements reconstructed energy assuming we observe a CCQE interaction, E_{reco}^{CCQE} , which is not equal to E_{ν}
- But can calculate the energy (E_{v}^{CCQE}) : from the Monte-Carlo truth charged lepton momentum and scattering angle, assuming quasi-elastic interaction
- Can then measure the relationship between E_{ν} and E_{ν}^{CCQE} , this will give the relationship between E_{reco}^{CCQE} and E_{ν}
 - Add parameters to allow extra freedom in relationship between E_{ν} and E_{ν}^{CCQE}
 - 1D v_e cross-section fits don't consider this freedom

IWCD - Analysis Improvements

- Additional 2D parameterizations on CC $v_e + v_\mu$ and CC $\overline{v}_e +$
 - $\overline{\nu}_{\mu}~$ cross-section error
 - Together with the 1D v_e parameterization, relationship between E_v and E_v^{CCQE} can be constrained
 - Samples are being fit to the $E_v vs E_v E_v^{CCQE}$ space
- Study the performance of IWCD constraints itself on flux and cross-section (no ND280 constraints)
- Results on cross-section uncertainty and neutrino oscillation sensitivity are coming soon...

HK Sensitivities and Impact of IWCD

Conclusions

Tailin Zhu, NOW 2022

Conclusions

- Overview the neutrino oscillation studies at HK with the impact from IWCD
- After 10 years of running time, with the improved systematics HK will reach sensitivities to
 - Measure δ_{CP} with a precision of $\leq 19^{\circ}$
 - Measure Δm_{32}^2 with a precision of 0.35% fractional error
 - Exclude CP conservation at 5σ for 61% of true δ_{CP} values
 - Mass ordering sensitive to $\geq 5\sigma$, assuming $\sin^2\theta_{23} > 0.5$
 - Exclude wrong octant values for true $\sin^2\theta_{23} < 0.47$ and true $\sin^2\theta_{23} > 0.55$ at 3σ
- IWCD shows 3.7% v_e/\overline{v}_e cross-section experimental error, improved on the 4.9% T2K theory error
 - Lifting up the sensitivity to exclude CP conservation
 - Expecting more fit outcomes
 - Sensitivities on other oscillation parameters, different off-axis spans, ...
 - Expecting analysis improvements
 - e.g. 2D parameterization, MC toy studies on cross-section errors, ...

HK Sensitivities and Impact of IWCD

Backup Slides

Tailin Zhu, NOW 2022

HK Sensitivities and Impact of IWCD

HK $E_v - E_v^{CCQE} v$ Spectra

Tailin Zhu, NOW 2022

- Improved systematics
 - Scaling uncertainty on flux, cross-section and SK detector systematics by $1/\sqrt{N}$, where N = 8.7 is the relative increase in neutrino beam exposure from T2K to Hyper-K
 - Studies from ND280 Upgrade and Intermediate Water Cherenkov Detector add further constraints to cross-section uncertainties
 - A factor of 3 reduction on all non-quasi-elastic uncertainties
 - A factor of 2.5 reduction on all quasi-elastic uncertainties
 - A factor 2 reduction on all anti-neutrino uncertainties
 - A reduction in neutral current uncertainties to the $\sim 10\%$ level
 - The v_e / \overline{v}_e cross-section ratio error was varied from ~3.6% to 1% to assess its impact

θ_{23} Octant Sensitivity

- Wrong θ_{23} octant exclusion over true $\sin^2\theta_{23}$, atmospheric neutrinos sample not included
- Sensitive to µ-like + e-like uncertainties, and are reduced by improved systematics
- After 10 years, values of true $\sin^2\theta_{23} < 0.47$ and true $\sin^2\theta_{23} > 0.55$ can be excluded at 3σ

Reconstructed Energy Bias

- Bias for 1p1h and 2p2h events with an oscillated muon neutrino flux
- Showing the difference in the reconstructed energy smearing for 2p2h events with QE-like and Delta-like interaction kinematics

Parameterization (T2K 2018 syst.)

- Flux:
 - v-mode v_{μ} (11), v-mode \overline{v}_{μ} (5), v-mode v_{e} (7), v-mode \overline{v}_{e} (2)
 - \overline{v} -mode \overline{v}_{μ} (11), \overline{v} -mode v_{μ} (5), \overline{v} -mode \overline{v}_{e} (7), \overline{v} -mode v_{e} (2)
- Cross-section:
 - CCQE axial-mass scaling factor
 - Fermi momentum for ¹⁶O
 - C_5^A nucleon to Δ transition axial form factor
 - Resonance-production axial-mass scaling factor
 - Scale of isospin 1/2 non-resonant background
 - CC other shape
 - v 2p2h shape for ¹⁶O
 - CC v_{e} normalisation

- CC $\overline{\nu}_{e}$ normalisation
- BeRPA coefficient A, B, D, E, U
- v 2p2h normalisation for ¹⁶O
- CC coherent for ¹⁶O normalisation
- NC coherent normalisation
- NC 1y normalisation
- NC other normalisation
- \overline{v} 2p2h normalisation for ¹⁶O
- 2p2h ¹²C to ¹⁶O normalisation

- Far detector + FSI + SI
 - *v*-mode 1-ring μ like (6), *v*-mode 1-ring e like (12), *v*-mode 1-ring e like +1 decay e (8)
 - \overline{v} -mode 1-ring μ like (6), \overline{v} -mode 1-ring e like (12)
 - SK energy scale for e-like + μ -like events (1)

Parameterization (IWCD Improved syst.)

- Same flux and far detector parameterization as T2K 2018 model
- Cross-section (slightly modified based on T2K 2018 model):
 - CCQE axial-mass scaling factor
 - Fermi momentum for ¹⁶O
 - C_5^A nucleon to Δ transition axial form factor
 - Resonance-production axial-mass scaling factor
 - Scale of isospin 1/2 non-resonant background
 - CC other shape
 - v 2p2h shape for ¹⁶O
 - CC v_e normalisation

- CC $\overline{\nu}_{e}$ normalisation
- BeRPA coefficient A, B, D, E, U
- v 2p2h normalisation for ¹⁶O
- CC coherent for ¹⁶O normalisation
- NC coherent normalisation
- NC 1γ normalisation
- NC other normalisation
- \overline{v} 2p2h normalisation for ¹⁶O
- 2p2h ¹²C to ¹⁶O normalisation
- * Binding energy on oxygen

* New added parameters

Parameterization (IWCD 1D Analysis)

- Same flux and far detector parameterization as T2K 2018 model
- Cross-section (slightly modified based on T2K 2018 model):
 - CCQE axial-mass scaling factor
 - Fermi momentum for ¹⁶O
 - C_5^A nucleon to Δ transition axial form factor
 - Resonance-production axial-mass scaling factor
 - Scale of isospin 1/2 non-resonant background
 - CC other shape
 - v 2p2h shape for ¹⁶O
 - * CC v_e normalisation (1 \rightarrow 5)

- * CC $\overline{\nu}_{e}$ normalisation (1 \rightarrow 5)
- BeRPA coefficient A, B, D, E, U
- v 2p2h normalisation for ¹⁶O
- CC coherent for ¹⁶O normalisation
- NC coherent normalisation
- NC 1γ normalisation
- NC other normalisation
- \overline{v} 2p2h normalisation for ¹⁶O
- 2p2h ¹²C to ¹⁶O normalisation
- * Binding energy on oxygen

* New added parameters

Parameterization (IWCD 2D Analysis)

- Same flux and far detector parameterization as T2K 2018 model
- Cross-section (slightly modified based on T2K 2018 model):
 - CCQE axial-mass scaling factor
 - Fermi momentum for ¹⁶O
 - C_5^A nucleon to Δ transition axial form factor
 - Resonance-production axial-mass scaling factor
 - Scale of isospin 1/2 non-resonant background
 - CC other shape
 - v 2p2h shape for ¹⁶O
 - * CC v_e normalisation (1 \rightarrow 5)
 - * CC $v_e + v_\mu$ 2D normalisation (29)
 - * CC \overline{v}_{e} + \overline{v}_{μ} 2D normalisation (29)

- * CC $\overline{\nu}_{e}$ normalisation (1 \rightarrow 5)
- BeRPA coefficient A, B, D, E, U
- v 2p2h normalisation for ¹⁶O
- CC coherent for ¹⁶O normalisation
- NC coherent normalisation
- NC 1γ normalisation
- NC other normalisation
- \overline{v} 2p2h normalisation for ¹⁶O
- ← 2p2h ¹²C to ¹⁶O normalisation

* New added parameters

HK Sensitivities and Impact of IWCD

IWCD - MC Properties

- Generated with 1 km flux and long tank geometry
- $1 \circ 4 \circ$ off-axis angle (OAA) span
 - Event generations at 7 different vertical detector positions
- Exposure
 - Same exposure between OAAs
 - 7E21 (21E21) POT for FHC (RHC)
- Event pile-up efficiency based on the nominal configuration
 - Probability to observe ID interactions that are not coincident with other ID interactions or OD light
 - About 7 35% fraction

IWCD 2D Analysis Framework

Parameterization (IWCD 2D Analysis)

• Additional IWCD cross-section constraints:

Parameter	Interaction types	Binning	# parameters
IWCD 2D $v + \overline{v}$ norm. xsec.	$v_{\mu} (\overline{v}_{\mu}) \text{ CC} + v_{e} (\overline{v}_{e}) \text{ CC}$	$E_v vs E_v$ - true E_v^{CCQE}	29+29
IWCD 1D $v_e + \overline{v}_e$ norm. xsec.	v_{e} (\overline{v}_{e}) CC	E_{v}	5+5
Flux (T2K 2018 model)	All types (v mode+ \overline{v} mode)	E_{v}	25+25
Cross-section (modified T2K 2018 model)	CC / NC	E_{v}	17
2p2h ¹² C to ¹⁶ O normalisation (fixed)	CC 2p2h	-	1
SK detector efficiencies + FSI +SI (T2K 2018 model)	CC / NC	reco. E _v ccqe	44
SK energy scale	CC / NC	reco. E_{ν}^{CCQE}	1

Tailin Zhu, NOW 2022

IWCD - Sensitivities

• Systematic uncertainties with 1D parameterization

	1-Ring v_{μ} -like		1-Ring v _e -like			
Error source	$\overset{v}{Mode}$	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	v-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like
Flux + Cross section	0.54%	0.53%	2.31%	2.83%	2.32%	2.60%
Detector + FSI + SI	1.23%	1.13%	1.4%	1.61%	4.87%	0.54%
All systematics	1.35%	1.25%	2.68%	3.26%	5.37%	2.65%

• Improved systematics

	1-Ring v_{μ} -like		1-Ring v_e -like			
Error source	$\overset{v}{Mode}$	\overline{v} -Mode	v-Mode CCQE- like	v̄-Mode CCQE- like	v-Mode CC1 <i>π</i> - like	v-Mode/v- Mode CCQE-like
Flux + Cross section	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%
Detector + FSI + SI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%
All systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%