

Jaafar Chakrani On behalf of the T2K collaboration Laboratoire Leprince-Ringuet (LLR) <jaafar.chakrani@polytechnique.edu>

Neutrino Oscillation Workshop 2022 Ostuni, Brindisi, Italy September 6th, 2022

POLYTECHNIQUE

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022

T2K Experiment

See talk by Lukas Berns (Monday)

Beam

- Measure $\nu_e/\bar{\nu}_e$ appearance: sensitive to $(\delta_{CP}, \theta_{13})$
- Measure $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance: sensitive to $(\theta_{23}, \Delta m^2)$
- How?
 - Produce an intense ν_{μ} (or $\bar{\nu}_{\mu}$) beam
 - Measure the unoscillated flux at the near detector complex to monitor the beam and constrain systematic uncertainties
 - Measure the oscillated flux at Super-Kamiokande

Barrel ECA

P0D ECAI

T2K Oscillation Analysis strategy

5

- * Stephen Dolan (Wednesday)
- Mainly $\nu_{\mu}(\bar{\nu}_{\mu})$ at ND interacting with CH \rightarrow use model to infer interactions of $\nu_{\mu}/\nu_{e}(\bar{\nu}_{\mu}/\bar{\nu}_{e})$ on H₂O

Different detectors, *i.e.* different acceptance and efficiencies

 → T2K's approach is to propagate the constraints on the flux and the neutrino interaction models from the ND to the FD

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022

ND280 has been able to provide quality measurements for T2K results, but with the **increasing statistics** its limitations on the **flux** and the **neutrino interaction model uncertainties** are starting to arise in the analyses

Limitations of current ND280

- Non-isotropic efficiency (unlike Super-Kamiokande)
- High momentum proton threshold (~450 MeV/c)
- For the oscillation analysis, neutrino interactions are characterized in **muon kinematics only**

 \Rightarrow T2K is currently upgrading ND280 to overcome these limitations

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022 12

T2K ND280 Upgrade Overview

- Super-FGD: 2.10⁶ 1 cm³ scintillator cubes
- New high-angle TPCs
- New Time Of Flight detector

The goal is to reduce the ND systematics with:

- Fully active target
- 4π acceptance for charged particles
- Lower proton momentum threshold (~300 MeV/c)
- Neutron kinematics reconstruction
- Larger statistics

Super-FGD JINST 13 P02006 (2018)

- ~2 million 1x1x1 cm3 cubes made of plastic scintillator → ~2 tons
- Cubes covered by reflector will be read out with 3 orthogonal WLS fibres each with MPPC on one end → total of 56,382 fibers

Super-FGD prototypes

• Multiple beam tests with prototypes have been performed to confirm the Super-FGD concept:

Super-FGD prototype (8x24x48 cm)

US-Japan prototype (8x8x32 cm)

 Multiple beam tests with prototypes have been performed to confirm the Super-FGD concept:

• At CERN with charged particles: <u>NIMA 936 (2018)</u>, <u>JINST 15, 12 (2020)</u>

Super-FGD prototype (8x24x48 cm)

US-Japan prototype (8x8x32 cm)

 Multiple beam tests with prototypes have been performed to confirm the Super-FGD concept:

• At CERN with charged particles: <u>NIMA 936 (2018)</u>, <u>JINST 15, 12 (2020)</u>

- At LANL with neutrons: <u>arxiv:2207.02685</u>
 - Measurement of the total cross section as a function of the neutron kinetic energy using event rate depletion along the beam axis: $N(z) = N_0 e^{-T\sigma_{tot}z}$

Super-FGD prototype (8x24x48 cm)

US-Japan prototype (8x8x32 cm)

 Multiple beam tests with prototypes have been performed to confirm the Super-FGD concept:

• At CERN with charged particles: <u>NIMA 936 (2018)</u>, <u>JINST 15, 12 (2020)</u>

- At LANL with neutrons: <u>arxiv:2207.02685</u>
 - Measurement of the total cross section as a function of the neutron kinetic energy using event rate depletion along the beam axis: $N(z) = N_0 e^{-T\sigma_{tot}z}$
- ↔ The tests show that this concept meets the requirements

Super-FGD prototype (8x24x48 cm)

US-Japan prototype (8x8x32 cm)

• The production of the 2 million cubes and initial assembly with fishing lines is completed, delivered to J-PARC in June!

At J-PARC

• The production of the 2 million cubes and initial assembly with fishing lines is completed, delivered to J-PARC in June! The SFGD box is also in preparation at CERN

- The production of the 2 million cubes and initial assembly with fishing lines is completed, delivered to J-PARC in June! The SFGD box is also in preparation at CERN
- Assembly with fibers by replacing the fishing lines will start soon

- The production of the 2 million cubes and initial assembly with fishing lines is completed, delivered to J-PARC in June! The SFGD box is also in preparation at CERN
- Assembly with fibers by replacing the fishing lines will start soon
- LED calibration system QC and assembly to begin this Autumn

Light Guide Plate (LGP)

Jaafar Chakrani (LLR)

- The production of the 2 million cubes and initial assembly with fishing lines is completed, delivered to J-PARC in June! The SFGD box is also in preparation at CERN
- Assembly with fibers by replacing the fishing lines will start soon
- LED calibration system QC and assembly to begin this Autumn
- The production of the front-end electronics to read the 56,382 channels is also starting soon after satisfactory performance tests on the prototypes (linearity, crosstalk, timing

High-Angle Time Projection Chambers

- Two new TPCs will be added:
 - Similar design as current TPCs
 - High resolution tracking and particle identification
- New additions w.r.t. current TPC design:
 - New field cage design to minimize dead space and maximize the tracking volume

High-Angle Time Projection Chambers

Two new TPCs will be added: Similar design as current TPCs Ο High resolution tracking and particle identification 0 New additions w.r.t. current TPC design: New field cage design to minimize dead space and maximize Ο **HA TPCs** the tracking volume Drift volume MicroMegas Module Frame 27kV at the cathode Resistive Bulk-MM Mesh@GND Standard Bulk-MM Replace the standard bulk-MicroMegas with new Ο ~128µm ΛF Mesh @ DLC@~+400V resistive MicroMegas Modules: nsulator: ~50ur Amplification gap: ~128µm ue: ~75µm Signal induced on multiple pads thanks to FR4 PCB FR4 PCB the resistive layer \rightarrow better spatial resolution with less pads

High-Angle Time Projection Chambers

- Multiple beam tests to:
 - Test the setup stability
 - Characterize the charge spreading and study resistive foil uniformity
 - Measure spatial and energy resolution
- Past beam tests with various charged particles:
 - CERN 2018 NIMA 163286 (2019)
 - DESY 2019 <u>NIMA 166109 (2021)</u>
 - DESY 2021 (analysis ongoing)
 - CERN November 2021 (analysis ongoing)
- Results confirm that the requirements are fulfilled:
 - Spatial resolution for a hit < 0.8 mm
 - dE/dx resolution < 10%
- Reconstruction algorithms are being optimized in light of the beam tests

Time-of-Flight (ToF) detector JPS Conf. Proc. 27, 011005 (2019)

- 6 ToF planes fully covering the 2 HA-TPC and Super-FGD
 - Each plane of consists of 20 scintillator bars (EJ200)
 - Readout with 16 MPPCs at both ends of each bar
 - Fully built and tested, currently finalizing DAQ

• Goals:

- precisely measure the crossing time of charged particles
- Separate inward going background from products of neutrino interactions in fiducial volume
- Gan be used as cosmic trigger for the calibration of Super-FGD and HA-TPCs
- → Could also improve particle identification with timing information
- Performances:
 - Excellent timing resolution ~ 130 ps

Improvements with the ND280 Upgrade

- Improved reconstruction at high and backward angles \rightarrow better constraints on the neutrino interaction model
- Increased target mass (x2 current ND280) \rightarrow more statistics
- Better reconstruction of outgoing nucleons \rightarrow access to new observables
- Neutrino interaction measurements beyond p_{μ} , $\cos \theta_{\mu}$ (exclusive and multidimensional analyses)

NOW 2022 - Sep 6th, 2022

30

Jaafar Chakrani (LLR)

• The neutrino energy can be estimated using the lepton kinematics only under the assumption of a quasi-elastic interaction on a static initial state nucleon

$$E^{QE}_{
u}=rac{m_{p}^{2}-(m_{n}-E_{b})^{2}-m_{\mu}^{2}+2(m_{n}-E_{b})E_{\mu}}{2ig(m_{n}-E_{b}-E_{\mu}+p_{\mu}\cos heta_{\mu}ig)}$$

• When reconstructing the proton as well, the *visible energy* can be a better estimation of the neutrino energy $E_{\rm vis} = E_{\mu} + T_p$

- Need the reconstruction of both muons and nucleons
- Probe nuclear effects (Fermi motion, FSI, ...)

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022

 Currently, T2K uses only lepton kinematics for the Oscillation Analysis (OA)

- Currently, T2K uses only lepton kinematics for the Oscillation Analysis (OA)
- With the ND280 Upgrade, we expect to obtain more precise measurements of the nucleons coming out from neutrino interactions
 → what will the impact be on the OA?

- Currently, T2K uses only lepton kinematics for the Oscillation Analysis (OA)
- With the ND280 Upgrade, we expect to obtain more precise measurements of the nucleons coming out from neutrino interactions
 → what will the impact be on the OA?
- With the nucleon information, we can introduce samples with new observables at the ND:
 - Transverse momentum imbalance
 - Visible energy:
 - $\bullet \quad E_{\rm vis} = E_\mu + T_p \,\, {\rm for} \,\, \nu_\mu \, {\rm interactions}$
 - $\bullet \quad E_{\rm vis} = E_\mu + T_n \text{ for } \bar{\nu}_\mu \text{ interactions}$

J.D.3

0.25

0.2

0.15

0.1

0.05

_0 4

• We can use T2K projections of POT assuming a scenario where ν_{μ} and $\bar{\nu}_{\mu}$ beam modes are alternated yearly to evaluate the impact of adding such samples on the **neutrino interaction model uncertainties**

• We can use T2K projections of POT assuming a scenario where ν_{μ} and $\bar{\nu}_{\mu}$ beam

• We can use T2K projections of POT assuming a scenario where ν_{μ} and $\bar{\nu}_{\mu}$ beam

• We can use T2K projections of POT assuming a scenario where ν_{μ} and $\bar{\nu}_{\mu}$ beam

With uncertainties on:

- Shell occupancies (P and S shells for C)
- Shape of the initial state nucleon momentum distribution (Pmiss)
- SRC contributions
- ...

• We can use T2K projections of POT assuming a scenario where ν_{μ} and $\bar{\nu}_{\mu}$ beam modes are alternated yearly to evaluate the impact of adding such samples on the **neutrino interaction model uncertainties**

FGD1+2 : Current ND280 (no Upgrade)

SFGD+FGD1+2 μ only : ND280 Upgrade using muon kinematics only

- SFGD+FGD1+2 μ +N : ND280 Upgrade using (Evis, δp_T) (when reconstructing a nucleon)

Jaafar Chakrani (LLR)

- We can use T2K projections of POT assuming a scenario where ν_{μ} and $\bar{\nu}_{\mu}$ beam modes are alternated yearly to evaluate the impact of adding such samples on the **neutrino interaction model uncertainties**
- Significant improvement is expected on constraining uncertainties at the ND with the Upgrade
- The use of nucleon information with (Evis, δp_T) allows larger constraints especially on the Fermi motion uncertainties
- FGD1+2 : Current ND280 (no Upgrade)
- SFGD+FGD1+2 μ only : ND280 Upgrade using muon kinematics only SFGD+FGD1+2 μ+N : ND280 Upgrade using (Evis, δp_T) (when reconstructing a nucleon)

Jaafar Chakrani (LLR)

Carbon Spectral Function uncertainties

- T2K is currently upgrading its near detector ND280 to overcome limitations of the current ND configuration
- The goal is to reduce systematic uncertainties, particularly on neutrino-nucleus interactions, to further probe CP violation
- The ND280 Upgrade will be installed during 2023
- The performances of the Upgrade are expected to open the door to precisely probe nuclear effects at an unprecedented level, for current as well as next-generation experiments

NOW 2022 - Sep 6th, 2022 49

Neutron detection with the Super-FGD

- Neutrons can be detected via their re-interaction within the detector
- If the path is long enough, neutron energy can be measured using time of flight
- Resolution: ~15-30%

Jaafar Chakrani (LLR)

NOW 2022 - Sep 6th, 2022

- $\delta \alpha_{T}$ is sensitive to FSI:
 - Higher values correspond to stronger FSI effect
 - Lower values correspond to less FSI

- $\delta \alpha_{\tau}$ is sensitive to FSI:
 - Higher values correspond to stronger FSI effect
 - Lower values correspond to less FSI

Jaafar Chakrani (LLR)

- $\delta \alpha_{\tau}$ is sensitive to FSI:
 - Higher values correspond to stronger FSI effect
 - Lower values correspond to less FSI

 \Rightarrow The Upgrade will open the door to new multi-dimensional analyses (e.g. δp_{τ} in bins of $\delta \alpha_{\tau}$)

$$E_{\nu}^{QE} = \frac{m_{p}^{2} - (m_{n} - E_{b})^{2} - m_{\mu}^{2} + 2(m_{n} - E_{b})E_{\mu}}{2(m_{n} - E_{b} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$
 is an accurate estimation of the neutrino energy using muon kinematics only if the initial state nucleon is static

NOW 2022 - Sep 6th, 2022

Jaafar Chakrani (LLR)

- The outgoing hadrons from a neutrino-nucleon interaction can re-interact with the remaining nucleus
- Ongoing work to improve the nuclear model for FSI of nucleons in neutrino simulations using INCL, one of the most predictive existing intranuclear-cascade models
 → crucial for T2K Near Detector Upgrade & next generation experiments

Sensitivity with the Upgraded T2K Near Detector

Phys. Rev. D 105,032010

- Using the outgoing proton information (eg. visible energy & transverse momentum imbalance) allows a better reconstruction of the neutrino energy and constraint on systematic uncertainties
- The dominant systematic uncertainties can be constrained down to the few-% level as required by future oscillation analyses of T2K and next generation experiments