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OUTLINE

» Short physics introduction
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The Gold-mine of Cosmologist

netic radiation in the universe

CMB: The oldest electromag

LE FIGARO-fr

Universe is expanding: Hubble’s law: v = HoD ( ~70 km/s/Mpc), 1919.

Cosmic microwave background, Penzias & Wilson, 1964

Abundance of primordial elements: ‘He, 2H, Li ()

Galaxies morphology and stars populations in time

Primordial gas cloud (without heavy elements),3 2011



The Big Bang

V decoupling The present Universe
emerges
History of the Universe from an Ultra-dense and
high temperature
initial state
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NEUTRINO FEATURES

- What we do know about neutrinos:

they are massive well measured Am?

cosmic neutrino background
should be out there

« What we don't know about neutrinos:

absolute mass mass ordering
scale (50,,.y <M Jighe = e OF me)
(m, < 0.8el) From Cosmology several

[KATRIN — Nature Phys. 2022, 2105.08533]

limits at 95 % CL on X'mv

. . from 0.56 to 0.1 | eV
cosmic neutrino background
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PTOLEMY - RELIC NEUTRINO DETECTION
STRATEGY

Background (3,
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DETECTOR CONCEPT

dT’|
—:%E'(VBXB) T Differential
dt B . . Trigger and selection rierentia energy
in atomic form measurement
Prog.Part.Nucl.Phys. 106 (2019) 120-131 [ ] [
" Dynamic EM particle selector
o > @ >0 >| 2
s S
a 43 Single electron detection by means of RF o
New concept: Transverse drift filter L fast H switching
: custom shaped high intensity B field
18.6 keV = 0.0 keV in 0./ meters || ||

High precision reference voltage

Exot =0(Vmce/soo~Vsource) +Ecal

10° ¥
« PTOLEMY aims at using TES detectors

with an envisaged resolution of AE =~ 0.05eV

simulated in KASSIOPEIA
software by the KATRIN collaboration

Transverse Kinetic Energy (eV)

1074..I....I....I....I....I....I....I....I..
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Position Z (m) 7




ELECTROMAGNETIC FILTERS

Transverse Drift filter
Magnetic Adiabatic Invariance
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HE@EENV FILTER CONGEMI

Auke Pieter Colijn (PATRAS 2019)
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BOBSLEDDING (PUSHING ELECTRON UP POTENTIAL)

Forward ExB Drift
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PTOLEMY: THE IDEA

[see PTOLEMY — 1810.06703; PTOLEMY — JINST 2022, 2108.10388]

- A new electromagnetic filter idea based on
RFdet * o -




PTOLEMY: THE IDEA

[see PTOLEMY — 1810.06703; PTOLEMY — JINST 2022, 2108.10388]

- A new electromagnetic filter idea based on

RF detection and dynamic E setting

)A\mmmk ; 1

3-H e/

first measurement of the energy via
cyclotron RF emission ( 10,[15)




[see PTOLEMY — 1810.06703; PTOLEMY — JINST 2022, 2108.10388]

+ A new electromagnetic filter idea based on

RF detection and dynamic E setting

)L\N'HENNAK ; 1

*H cz/' ,

first measurement of the energy via enter i within ~ 10 eV from
cyclotron RF emission (~ 10us) endpoint




PTOLEMY: THE IDEA

[see PTOLEMY — 1810.06703; PTOLEMY — JINST 2022, 2108.10388]

+ A new electromagnetic filter idea based on

RF detection and dynamic E setting

AV known to | ppm precision

)A\mfsmmk ; 1

38 e/ ' .

n o -

' collimate and
slow down

first measurement of the energy via cyclotron enter if within ~ 10elV from
RF emission (~ 10us) endpoint




Many R&Ds
ongoing to
show the feasibllity of the PTOLEMY detector




HV STABILITY AND MONITORING

@LNGS

Diodes box

Field mill box
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Gap Opening in Double-Sided Highly Hydrogenated Free-Standing
Graphene

Maria Grazia Betti,* Ernesto Placidi, Chiara Izzo, Elena Blundo, Antonio Polimeni, Marco Sbroscia,
José Avila, Pavel Dudin, Kailong Hu, Yoshikazu Ito, Deborah Prezzi,* Miki Bonacci, Elisa Molinari,
and Carlo Mariani

Cite This: Nano Lett. 2022, 22, 2971-2977 Read Online
ACCESS | |l Metrics & More | Article Recommendations | @ Supporting Information
ABSTRACT: Conversion of free-standing graphene into pure C1s )
graphane—where each C atom is sp® bound to a hydrogen atom— kp open ng ‘/\
has not been achieved so far, in spite of numerous experimental 286 284 286 284
attempts. we obtam an unprecedented level of hydro- Binding Eneray (V) , Bmdmg crery @0 Binding Eneray (V)
genation of sp® bonds) by exposing fully free-standing o
nanoporous mples—constituted by a single to a few veils of & 4R

smoothly rippled graphene—to atomic hydrogen in ultrahigh
vacuum. Such a controlled hydrogenation of high-quality and high-
specific-area samples converts the original conductive graphene
into a wide gap semiconductor, with the valence band maximum
(VBM) ~ 3.5 eV below the Fermi level, as monitored by
photoemission spectromicroscopy and confirmed by theoretical
predictions. In fact, the calculated band structure unequivocally
identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of 7 states, in
excellent agreement with the experimental results.
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ALTERNATIVES

« Preliminary studies show that this is a feasible solution
« When passivated with hydrogen,

the nanotube potential looks like Fullerene sphere with single T atom
very promising even though prototypal idea
[PTOLEMY — 2203.11228]

(@3]

VJ_ (eV)

distance from the axis (A)

external B-field could also prevent the formation of
molecules if two atoms are in the same nanotube
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CALORIMETER

E_e=e(V_cal-V_target )+E_cal

Now: 0.11 eV @ 0.8 eV and 106 mK and 10x10 ym?
TiAuTi 90nm [ Ti(45nm) Au(45nm) ] G~137 ns)

Design Goal (PTOLEMY): AEFwHv = 0.05 eV @ 10 eV
translates to AE < E* (a < 1/3)

AEFwHm= 0.022 eV @ 0.8 eV

C. [n
AEpwum~ 2.36 |4kpTé — \E
AExT3? 2 T =36 mK @10x10 pm? (t=90 nm)

2 T,= 46 mK @10x10 pm? (t=45 nm)

Dynamic EM particle selector

Electron sources

[
aas/dow

Single electron detection by means of RF
fast HV switching
custom shaped high intensity B field

High precision reference voltage
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DEMONSTRATOR MAGNET

Being rebuilt at LNGS in a larger size.

Measured B field shape as expected

EM-filter region
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A taste of the results that PTOLEMY
can achieve

Even in absence of capture events spectral analysis will allow to achieve mass measurement with the percentage
uncertainty reported below: energy resolution versus lights neutrino mass for 10 mg x yr of exposures
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Conclusion and Qutlooks

PTOLEMY aims at detecting cosmic neutrino background on a long term time scale
The detector prototype will be ready at LNGS by next year

Prototype baseline option is: T embedded on graphene; New concept EM filter in final
configuration; electron energy resolution measured in several steps (MCP/SDD). Ultimately
operate TES with sub-eV energy resolution.

Possible intermediate results from Prototype on neutrino mass measurements

Ultimate goals of demonstrator: instrumented mass ~ hundreds of ug, energy resolution 50-
|00 meV, T storage solution will come from optimisation of atomic T support structure.

Time scale 5 years.
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BACK UP

Angelo Esposito — IAS 23 339 Rencontres de Blois, May 2022



QUANTUM SPREAD

» Distributing tritium on flat graphene has one
spatitaieiyadk => uncertainty on => spread In final

tritium tritium’s momentum electron energy

+ A simple semi-classical calculation returns
P\_"_\

an order of magnitude

PeApPT Dl ul
#&acﬂf Thﬁti%l*%ti@ ~ 0.6 — Ola&er%an the wanted
Reave functiélg =T energy accuracy
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QUANTUM SPREAD

« A more accurate calculation for the rate,
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QUANTUM SPREAD

A more accurate calculation for the rate,
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QUANTUM SPREAD

« A more accurate calculation for the rate,

— 3, final free *He't

--- CNB, final free *He*

PTT T T T

— 24, final bound *He*

--- CNB, final bound *He*t
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peak is well seEar!ated
it Is however exponentially
unlikely

[PTOLEMY — 2203.11228]
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A POSSIBLE SOLUTION

» o reduce the guantum spreaivve need to

delocalize the initial tritium (ax; ~ fewA should

be enough) try to realize an

approximate momentum eigenstate
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A POSSIBLE SOLUTION

» [0 reduce the quantum spreaivve need to

delocalize the inrtial tritium (Ax; ~ fewi should

be enough) B A tO e allzc Sl
appt

nanoTeEeEs— E—

free to move in this direction

1$tate

‘ el i confined in
’//’ ‘\\ /'/’ \ LY / ‘\ / \\\

this direction

arbon
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A POSSIBLE SOLUTION

» Preliminary studies show that this Is a feasible
solution

potential along the axis

5]

1
0

distance between tritium atoms (A)

external B-field could also prevent the formation of
molecules if two atoms are in the same nanotube
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WHY HYDROGENATED
NANOTUBES?

The reason to passivate the nanotubes with
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TRITIUM-GRAPHENE

POTENTIAL

- The tritium-graphene potential "
s strongly dependent on covera _ «

—

¢

and curvature of the sheet N

- For very concave sheets (nanott
the potential is essentially not
binding anymore

- [he highest the coverage the
deeper Is the potential

32
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MORE DETAILS ON THE
ELECTRON SPECTRUM

Two extreme cases for the °Het wave function (near the endpoint)

Free helium:

llee(X) e eikHe.X = Mfi . exp(_AXYZ"lkHe + kelz)
maximize the probability when kg, =~ -k, probability Is
Maximum N a region Aky, ~ 1/Axy large qﬁntum spread

Bound helium: i
Ype(X) = Pr(X) = Mj; ~ exp(—Ax7k2) < 1

no spread but the event Is exponentially unlikely
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