First Relic Neutrino Search

with the KATRIN experiment

Thierry Lasserre

on behalf of the KATRIN collaboration

NOW 2022 Neutrino Oscillation Workshop

✓ Experimental site:

Karlsruhe Institute of Technology

✓ International Collaboration (150 members)

✓ Main goal: neutrino mass with 0.2 eV sensitivity

Precision β -decay spectroscopy

✓ Relic neutrino search → this talk

KATRIN experimental challenges

- strong tritium source: 10¹¹ decays/s \checkmark
- < 0.1 cps background level \checkmark
- \sim 1 eV energy resolution \checkmark
- 0.1% level understanding \checkmark of the spectrum shape
- 0.1% level hardware stability \checkmark controlled over the years

Thierry Lasserre – Now 2022

Cea

KATRIN Working Principle

Measurement strategy

KATRIN Data Taking Overview

Cosmic neutrino background

Cosmic neutrino background figures

- ✓ in the very early Universe, v's are in thermal equilibrium with matter/radiation
- ✓ Big-Bang + 1 sec: v decouple \rightarrow Cosmic Neutrino Background emission
- \checkmark today: <n_v> ~ 56 O(meV) v per cm³ per specie
- \checkmark local v clustering possible \rightarrow overdensity ratio η can be constrained by KATRIN

Dataset for CNB analysis

as in the case of neutrino mass analysis

	1 st campaign PRL 123 (2019) & PRD 104 (2021)	2 nd campaign Nat. Phys. (2022) & PRL 129 (2022)
Campaign date	April-May 2019	Sept-Nov 2019
Total scan time	522 h	744 h
Source activity	25 GBq	98 GBq
Background	290 mcps	220 mcps
Tritium purity	97.6%	98.7%
Electrons in Rol	2 Mio	4.3 Mio

Thresholdless neutrino capture on Tritium

Sensitivity to the overdensity ratio η

Karlsruhe Tritium Laboratory (TLK)

Overall gaseous tritium quantity at TLK: currently 25 g

KATRIN has only the sensitivity to probe large clustering of cosmic neutrinos around the solar system

$$\eta = n_v / < n_v >$$

✓ fit of theoretical prediction: $\Gamma(qU)$

cea

Analysis strategy

 \checkmark fit of theoretical prediction: $\Gamma(qU) \propto \mathbf{A} \cdot \int_{qU}^{E_0} D(E; \mathbf{m}_{\nu}^2, \mathbf{E}_0, \boldsymbol{\eta}) \cdot R(qU, E) dE + \mathbf{B}$

✓ Relic neutrino fit parameters: η , <ECv_B>, E_0 , B, A, m_v^2

✓ fit model informed by **theoretical** and **experimental** inputs (e-gun, krypton, monitoring, ...)

Theoretical input: molecular final states

- ✓ β —electron and tritium molecule share the energy released in the decay
- ✓ precise calculation of molecular ground and excited final states

A. Saenz et al, Phys. Rev. Lett. 84, 242 (2000) + KATRIN updates

- ✓ unavoidable energy broadening due to molecular effects
- ✓ zero-point energy broadening (irreducible)

Impact of molecular Tritium on CNB search

- ✓ Free Atomic Tritium: relic peak $2m_v$ above E_0
- ✓ Molecular Tritium:
 - ✓ FSD ground state smears out the tritium spectrum → relic peak separation in the data reduced to: $2m_v - E_{GS}$
 - ✓ For m_v < 0.85 eV:
 - $\checkmark\,$ relic signal with β electrons overlap
 - ✓ for η = 1: S/B ratio = 10⁻⁷
 - ✓ the detection of relic neutrinos with molecular tritium is deemed infeasible

Relic neutrino analysis fit

Fit Parameters:

Relic neutrino search fit with systematics

Thierry Lasserre – Now 2022

Relic neutrino fit results (best fit)

✓ KNM1 2019 dataset:

- ✓ 522 hours
- ✓ 3.4 μ g for capture on tritium

✓ KNM2 2019 dataset

- ✓ 744 hours
- ✓ 13.0 μ g for capture on tritium

Relic neutrino fit results (best fit)

- ✓ KNM1 2019 dataset:
 - ✓ 522 hours
 - ✓ 3.4 μ g for capture on tritium

✓ KNM2 2019 dataset

- ✓ 744 hours
- ✓ 13.0 μ g for capture on tritium
- ✓ no evidence for relic neutrino overdensity → upper limits

✓ KNM 1+2 combination

Systematics uncertainties overview

Cea

Uncertainty budget for relic neutrino search

New Relic Neutrino Upper Limits (2022)

- ✓ test for <u>large overdensity η </u> of relic neutrinos in our surrounding
 - ✓ First campaign KNM1
 - ✓ Second campaign KNM2
- ✓ combined limit
 ✓ η < 1.1 · 10¹¹/α at 95% CL
- $\checkmark\,$ the search is statistically limited

Conclusion & Outlook

✓ first KATRIN search for relic neutrinos:
 Phys. Rev. Lett. **129**, 011806 (2022)

 new limit on relic neutrino overdensity ratio:

✓ η < 1.1 · 10¹¹/α at 95% C.L.

 ✓ improved limit by 2 orders of magnitude compared to previous laboratory limits

✓ new KATRIN forecast: η < 1 · 10¹⁰
 (90% C.L., 130 mcps background)

Don't miss the KATRIN plenary talk by G. Drexlin on Friday!

Outlook: dataset available in 2022

>70e6 e⁻ registered

thank you for

your attention

00