DECAYING NEUTRINOS IN COSMOLOGY

Isabel M. Oldengott,

Gabriela Barenboim, Joe Zhiyu Chen, Steen Hannestad, Giovanni Pierobon, Thomas Tram, Yvonne Y. Y. Wong

*CP3, Université catholique de Louvain

arXiv: 2203.09075, 2011.01502

I) Why neutrino decay?

I) Why neutrino decay?

Neutrino oscillations

 \rightarrow Standard model of particle physics has to be extended

→ new particles/new interactions naturally appear

I) Why neutrino decay?

Neutrino oscillations

- \rightarrow Standard model of particle physics has to be extended
 - \rightarrow new particles/new interactions naturally appear

Here: Effective Lagrangian

I) Why neutrino decay?

Neutrino oscillations

 \rightarrow Standard model of particle physics has to be extended

→ new particles/new interactions naturally appear

Here: Effective Lagrangian

- **Invisible neutrino decay** $\nu_H \rightarrow \nu_l + \phi$
- $2 \leftrightarrow 2$ processes

I) Why neutrino decay?

Neutrino oscillations

 \rightarrow Standard model of particle physics has to be extended

→ new particles/new interactions naturally appear

Here: Effective Lagrangian $\mathcal{L}_{\mathrm{int}} = \mathfrak{g}_{ij} \bar{\nu}_i \nu_j \phi$ \blacktriangleleft here: assume massless ϕ Universal coupling: $\mathfrak{g}_{ij} = \mathfrak{g} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ \rightarrow recoupling evolution rates [eV] e^{-01} $g=10^{-5}, \Gamma_{2} \rightarrow 2$ -- $g=10^{-5}$, Γ_{dec} $g=10^{-10}, \Gamma_{2\to 2}$ New interactions: g=10⁻¹⁰, Γ_{dec} • <u>Invisible neutrino decay</u> Hubblerate $\nu_H \rightarrow \nu_l + \phi$ 10-41 • 2 ↔ 2 processes 10-4 0.01 106 100 104 T [eV] for small couplings -> invisible decay dominant process

II) Why cosmology?

II) Why cosmology?

Neutrino mass:

 $m_{\nu} < \mathcal{O}(1 \,\mathrm{eV})$

$$\Gamma_{\rm dec} = \frac{1}{\gamma \tau_0} \\ = \frac{\mathfrak{g}^2}{4\pi} m_{\nu H} \left(\frac{m_{\nu H}}{E_{\nu H}} \right)$$

Life time gets time dilated, decay rate contracted

II) Why cosmology?

II) Why cosmology?

Introduction: Cosmic Microwave Backround

How does neutrino decay impact the Cosmic Microwave Background (CMB)?

Recombination (~ 0.3 eV) → Universe gets transparent to photons

Introduction: Cosmic Microwave Backround

How does neutrino decay impact the Cosmic Microwave Background (CMB)?

Recombination (~ 0.3 eV) → Universe gets transparent to photons

Introduction: Cosmic Microwave Backround

How does neutrino decay impact the Cosmic Microwave Background (CMB)?

Recombination (~ 0.3 eV) → Universe gets transparent to photons

Let's be more technical... \rightarrow Cosmic perturbation theory:

1) Perturbed Einstein equation:

$$\bar{G}_{\mu\nu} + \delta G_{\mu\nu} = 8\pi G (\bar{T}_{\mu\nu} + \delta T_{\mu\nu})$$

2) Perturbed phase-space distribution $f(\mathbf{k}, \mathbf{q}, \tau) = \overline{f}(q, \tau) \left(1 + \Psi(\mathbf{k}, \mathbf{q}, \tau)\right)$

Perturbed Boltzmann equation:

$$\dot{\Psi}(\mathbf{k},\mathbf{q},\tau) + \mathrm{i}\frac{|\mathbf{q}||\mathbf{k}|}{\epsilon}(\hat{k}\cdot\hat{q})\Psi(\mathbf{k},\mathbf{q},\tau) + \frac{\partial\ln\bar{f}_i(|\mathbf{q}|,\tau)}{\partial\ln|\mathbf{q}|}\left[\dot{\tilde{\eta}} - (\hat{k}\cdot\hat{q})^2\frac{\dot{h}+6\dot{\tilde{\eta}}}{2}\right] = \mathcal{C}[\Psi]$$

Let's be more technical... \rightarrow Cosmic perturbation theory:

1) Perturbed Einstein equation:

$$\bar{G}_{\mu\nu} + \delta G_{\mu\nu} = 8\pi G(\bar{T}_{\mu\nu} + \delta T_{\mu\nu})$$

2) Perturbed phase-space distribution $f(\mathbf{k}, \mathbf{q}, \tau) = \overline{f}(q, \tau) \left(1 + \Psi(\mathbf{k}, \mathbf{q}, \tau)\right)$

Perturbed Boltzmann equation:

standard free-streaming case

$$\dot{\Psi}(\mathbf{k},\mathbf{q},\tau) + \mathrm{i}\frac{|\mathbf{q}||\mathbf{k}|}{\epsilon}(\hat{k}\cdot\hat{q})\Psi(\mathbf{k},\mathbf{q},\tau) + \frac{\partial\ln\bar{f}_i(|\mathbf{q}|,\tau)}{\partial\ln|\mathbf{q}|}\left[\dot{\tilde{\eta}} - (\hat{k}\cdot\hat{q})^2\frac{\dot{h}+6\dot{\tilde{\eta}}}{2}\right] = \mathcal{O}[\mathbf{q}]$$

Let's be more technical... \rightarrow Cosmic perturbation theory:

1) Perturbed Einstein equation:

$$\bar{G}_{\mu\nu} + \delta G_{\mu\nu} = 8\pi G (\bar{T}_{\mu\nu} + \delta T_{\mu\nu})$$

2) Perturbed phase-space distribution $f(\mathbf{k}, \mathbf{q}, \tau) = \overline{f}(q, \tau) \left(1 + \Psi(\mathbf{k}, \mathbf{q}, \tau)\right)$

Perturbed Boltzmann equation:

standard free-streaming case

$$\dot{\Psi}(\mathbf{k},\mathbf{q},\tau) + \mathrm{i}\frac{|\mathbf{q}||\mathbf{k}|}{\epsilon}(\hat{k}\cdot\hat{q})\Psi(\mathbf{k},\mathbf{q},\tau) + \frac{\partial\ln\bar{f}_i(|\mathbf{q}|,\tau)}{\partial\ln|\mathbf{q}|}\left[\dot{\tilde{\eta}} - (\hat{k}\cdot\hat{q})^2\frac{\dot{h}+6\dot{\tilde{\eta}}}{2}\right] = \mathcal{C}$$

Decompose phase-space perturbation into Legendre polynomials:

$$\Psi(|\mathbf{k}|, |\mathbf{q}|, \hat{k} \cdot \hat{q}) = \sum_{\ell=0}^{\ell} (-i)^{\ell} (2\ell+1) \Psi_{\ell}(|\mathbf{k}|, |\mathbf{q}|) P_{\ell}(\hat{k} \cdot \hat{q})$$

→ Neutrino Boltzmann hierarchy:

$$\begin{split} \dot{\Psi}_{0} &= -\frac{qk}{\epsilon} \Psi_{1} + \frac{1}{6} \dot{h} \frac{d\ln f_{0}}{d\ln q} + \mathcal{O}_{\bullet} \phi_{0}], \quad \text{free-streaming} \\ \dot{\Psi}_{1} &= \frac{qk}{3\epsilon} (\Psi_{0} - 2\Psi_{2}) + \mathcal{O}_{\bullet} \phi_{1}], \\ \dot{\Psi}_{2} &= \frac{qk}{5\epsilon} (2\Psi_{1} - 3\Psi_{3}) - \left(\frac{1}{15}\dot{h} + \frac{2}{5}\dot{\eta}\right) \frac{d\ln f_{0}}{d\ln q} + \mathcal{O}_{\bullet} \phi_{2}], \\ \dot{\Psi}_{\ell \geq 3} &= \frac{qk}{(2\ell+1)\epsilon} \left[\ell\Psi_{\ell-1} - (\ell+1)\Psi_{\ell+1}\right] + \mathcal{O}_{\bullet} \phi_{\ell}] \end{split}$$

Neutrino decay \rightarrow Calculate collision integral

G. Barenboim, J. Chen, S. Hannestad, IMO, T. Tram, Y. Wong arXiv: 2011.01502

Background Boltzmann:

$$\begin{split} \frac{\partial \bar{f}_{\nu H}}{\partial \tau} &= \frac{a^2(m_{\nu H} + m_{\nu l})}{\tau_0 \epsilon_1 q_1} \left[-\underbrace{q_1 \underbrace{(m_{\nu H}^2 - m_{\nu l}^2)}{m_{\nu H}^2} \bar{f}_{\nu H}(q_1)}_{\text{dec}} + \underbrace{\int_{q_{2,-}}^{q_{2,+}} \mathrm{d}q_2 \frac{q_2}{\epsilon_2} \bar{f}_{\nu l}(q_2) \bar{f}_{\phi}(\epsilon_1 - \epsilon_2)}_{\text{inv}} + \underbrace{\bar{f}_{\nu H}(q_1) \left(\int_{q_{2,-}}^{q_{2,+}} \mathrm{d}q_2 \frac{q_2}{\epsilon_2} \bar{f}_{\nu l}(q_2) - \int_{q_{3,-}}^{q_{3,+}} \mathrm{d}q_3 \bar{f}_{\phi}(q_3)\right)}_{q_8} \right] \\ \frac{\partial \bar{f}_{\nu l}}{\partial \tau} &= \frac{a^2(m_{\nu H} + m_{\nu l})}{\tau_0 \epsilon_2 q_2} \left[\underbrace{\int_{q_{1,-}}^{q_{1,+}} \mathrm{d}q_1 \frac{q_1}{\epsilon_1} \bar{f}_{\nu H}(q_1)}_{\text{dec}} - \underbrace{\bar{f}_{\nu l}(q_2) \int_{q_{3,-}}^{q_{3,+}} \mathrm{d}q_3 \bar{f}_{\phi}(q_3)}_{\text{inv}} + \underbrace{\int_{q_{1,-}}^{q_{1,+}} \mathrm{d}q_1 \frac{q_1}{\epsilon_1} \left(\bar{f}_{\nu H}(q_1) \bar{f}_{\phi}(\epsilon_1 - \epsilon_2) - \bar{f}_{\nu H}(q_1) \bar{f}_{\nu l}(q_2) \right)}_{q_8} \right] \\ \frac{\partial \bar{f}_{\phi}}{\partial \tau} &= \frac{2a^2(m_{\nu H} + m_{\nu l})}{\tau_0 q_3^2} \left[\underbrace{\int_{q_1}}_{\text{dec}} \mathrm{d}q_1 \frac{q_1}{\epsilon_1} \frac{\bar{f}_{\nu H}(q_1)}{\epsilon_2} - \underbrace{\bar{f}_{\phi}(q_3) \int_{\bar{q}_2}}_{\text{inv}} \mathrm{d}q_2 \frac{q_2}{\epsilon_2} \frac{\bar{f}_{\nu l}(q_2)}{\epsilon_2} + \underbrace{\int_{\bar{q}_1}}_{q_1} \mathrm{d}q_1 \frac{q_1}{\epsilon_1} \left(\bar{f}_{\nu H}(q_1) \bar{f}_{\phi}(q_3) - \bar{f}_{\nu H}(q_1) \bar{f}_{\nu l} \left(\sqrt{(\epsilon_1 - q_3)^2 - a^2 m_{\nu l}^2} \right) \right)}_{q_8} \right] \\ \frac{\partial \bar{f}_{\phi}}{\partial \tau} &= \frac{2a^2(m_{\nu H} + m_{\nu l})}{\epsilon_0 q_3^2} \left[\underbrace{\int_{\bar{q}_1}}_{\mathrm{dec}} \mathrm{d}q_1 \frac{q_1}{\epsilon_1} \frac{\bar{f}_{\nu H}(q_1)}{\epsilon_0 q_2} - \underbrace{\tilde{f}_{\nu H}(q_1) - \underbrace{\tilde{f}_{\phi}(q_3)}{\epsilon_2} \frac{\bar{f}_{q_2}}{\epsilon_2} \frac{q_2}{\epsilon_2} \frac{\bar{f}_{\nu l}(q_2)}{\epsilon_2} + \underbrace{\tilde{f}_{\mu l}(q_1) \frac{\bar{f}_{\mu l}(q_1)}{\epsilon_1} \left(\underbrace{\tilde{f}_{\nu H}(q_1) \frac{\bar{f}_{\mu l}(q_1)}{\epsilon_1} - \underbrace{\tilde{f}_{\nu H}(q_1) \frac{\bar{f}_{\nu l}(q_2)}{\epsilon_2} \right)}_{q_8} \right] \right] \\ \frac{\partial \bar{f}_{\phi}}{\partial \tau} &= \frac{2a^2(m_{\nu H} + m_{\nu l})}{\epsilon_0 q_3^2} \left[\underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{dec}} - \underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{d}q_2} \frac{\bar{f}_{\mu l}(q_2)}{\epsilon_2} + \underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{d}q_2} \frac{\bar{f}_{\mu l}(q_2)}{\epsilon_2} + \underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{d}q_2} \frac{\bar{f}_{\mu l}(q_1)}{\epsilon_1} \left(\underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{d}q_2} - \underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{d}q_2} - \underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{d}q_2} + \underbrace{\tilde{f}_{\mu l}(q_1)}_{\mathrm{d}q_2} - \underbrace{\tilde{f}_{$$

$$\begin{split} \underbrace{ \mathcal{P}\text{erturbation equations:}}_{\mathcal{C}^{1}[\Psi_{\nu H,\ell}(q_{1})] = \frac{a^{2}(m_{\nu H} + m_{\nu \ell})}{\tau_{0}\epsilon_{1}q_{1}\bar{f}_{\nu H}} \left[\underbrace{\int_{q_{2,-}}^{q_{2,+}} \mathrm{d}q_{2}\frac{q_{2}}{\epsilon_{2}} \left(K_{\ell}(q_{1},q_{2})\Psi_{\nu \ell,\ell} - \bar{f}_{\nu H}\Psi_{\nu H,\ell} \right) \bar{f}_{\nu \ell}(q_{2})\bar{f}_{\phi}\left(\epsilon_{1} - \epsilon_{2}\right)}{\mathrm{inv}} + \underbrace{\int_{q_{3,-}}^{\bar{q}_{3,-}} \mathrm{d}q_{3}L_{\ell}(q_{1},q_{3})\Psi_{\phi,\ell}\bar{f}_{\phi}(q_{3})\bar{f}_{\nu \ell}\left(\sqrt{(\epsilon_{1} - q_{3})^{2} - a^{2}m_{\nu \ell}^{2}}\right)}{\mathrm{inv}} \\ + \underbrace{\bar{f}_{\nu H}(q_{1})}_{\tau_{0}} \left(\int_{q_{2,-}}^{q_{2,-}} \mathrm{d}q_{2}\frac{q_{2}}{\epsilon_{2}}K_{\ell}(q_{1},q_{2})\Psi_{\nu \ell,\ell}\bar{f}_{\nu \ell}(q_{2}) - \int_{\bar{q}_{3,-}}^{\bar{q}_{3,+}} \mathrm{d}q_{3}L_{\ell}(q_{1},q_{3})\Psi_{\phi,\ell}\bar{f}_{\phi}(q_{3})} \right) \right] \\ \\ \mathcal{C}^{1}[\Psi_{\nu \ell,\ell}(q_{2})] &= \frac{a^{2}(m_{\nu H} + m_{\nu \ell})}{\tau_{0}\epsilon_{2}g_{2}f_{\nu \ell}} \left[\underbrace{\int_{q_{1,-}}^{q_{1,-}} \mathrm{d}q_{1}\frac{q_{1}}{\epsilon_{1}} \left(K_{\ell}(q_{2},q_{1})\Psi_{\nu H,\ell} - \bar{f}_{\nu \ell}(q_{2})\Psi_{\nu \ell,\ell} \right) \bar{f}_{\nu H}(q_{1})}_{\mathrm{dec}} + \mathrm{similar for } \phi \\ \\ + \underbrace{\int_{q_{1,-}}^{q_{1,+}} \mathrm{d}q_{1}\frac{q_{1}}{\epsilon_{1}} K_{\ell}(q_{2},q_{1}\bar{f}_{\nu H}(q_{1})\Psi_{\nu H,\ell} \left(\bar{f}_{\phi}(\epsilon_{1} - \epsilon_{2}) - \bar{f}_{\nu \ell}(q_{2}) \right)}_{q_{9}} \\ \\ + \underbrace{\int_{q_{3,-}}^{q_{5,+}}} \mathrm{d}q_{3}\left(L_{\ell}(q_{2},q_{3})\Psi_{\phi,\ell} - \Psi_{\nu,\ell,\ell} \right) \bar{f}_{\phi}(q_{3})\bar{f}_{\nu H} \left(\sqrt{(\epsilon_{2} + q_{3})^{2} - a^{2}m_{\nu H}^{2}} \right) \right] \\ \end{aligned}$$

In principle: Implement equations in linear Einstein-Boltzmann solver

In practice: This is <u>extremely</u> hard...

In principle: Implement equations in linear Einstein-Boltzmann solver

In practice: This is <u>extremely</u> hard...

Study equations in limiting regimes:

NON-RELATIVISTIC DECAY

RELATIVISTIC DECAY

G. F. Abellán et al, arXiv: 2112.13862; Z. Chacko et al. arXiv:1909.05275; Z. Chacko et al. ArXiv:2002.08401; M. Kaplinghat et al. arXiv:9907388

In practice: This is <u>extremely</u> hard...

Study equations in limiting regimes:

NON-RELATIVISTIC DECAY

RELATIVISTIC DECAY

G. F. Abellán et al, arXiv: 2112.13862; Z. Chacko et al. arXiv:1909.05275; Z. Chacko et al. ArXiv:2002.08401; M. Kaplinghat et al. arXiv:9907388

In a nutshell

We found an **inconsistency in the perturbation equations** in previous literature (→ violation of momentum conservation) (*arXiv: 2011.01502*)

In principle: Implement equations in linear Einstein-Boltzmann solver

In practice: This is <u>extremely</u> hard...

Study equations in limiting regimes:

NON-RELATIVISTIC DECAY

RELATIVISTIC DECAY

G. F. Abellán et al, arXiv: 2112.13862; Z. Chacko et al. arXiv:1909.05275; Z. Chacko et al. ArXiv:2002.08401; M. Kaplinghat et al. arXiv:9907388

In a nutshell

 We found an **inconsistency in the perturbation equations** in previous literature (→ violation of momentum conservation) (*arXiv: 2011.01502*)

• However, the main effect comes from the background equations: G. F. Abellán et al, arXiv: 2112.13862 \rightarrow missing term in perturbation eqs. not that important

→ Former findings remain valid: Transfer of energy from matter to radiation sector → strong degeneracy between τ_0 and m_v

 $\rightarrow\,$ relaxation of cosmological neutrino mass bound

RELATIVISTIC DECAY

At background level: Transfer energy from one relativistic species to another \rightarrow no impact

RELATIVISTIC DECAY

At background level: Transfer energy from one relativistic species to another \rightarrow no impact

At perturbation level, expect: decay and inverse decay isotropize v- ϕ fluid

 \rightarrow suppression of anisotropic stress and higher multipoles

 \rightarrow enhancement of neutrino monopole/perturbed energy density

RELATIVISTIC DECAY

At background level: Transfer energy from one relativistic species to another \rightarrow no impact

At perturbation level, expect: decay and inverse decay isotropize v- ϕ fluid

 \rightarrow suppression of anisotropic stress and higher multipoles

 \rightarrow enhancement of neutrino monopole/perturbed energy density

 \rightarrow enhancement of temperature anisotropies

What's the rate of supression of the anisotropic stress?

$$\dot{\Psi}_{2,\nu\phi} = \dots - a\Gamma_T \Psi_{2,\nu\phi} \quad \Rightarrow \quad \Gamma_T = ???$$

What's the rate of supression of the anisotropic stress?

$$\dot{\Psi}_{2,\nu\phi} = \dots - a\Gamma_T \Psi_{2,\nu\phi} \quad \Rightarrow \quad \Gamma_T = ???$$

Former works:

S. Hannestad and G. Raffelt arXiv:hep-ph/0509278, M. Escudero and M. Fairbairn arXiv:1907.05425 [hep-ph], M. Archidiacono and S. Hannestad arXiv:1311.3873

Extra γ^{-2} **suppression** due to co-linear decay products.

What's the rate of supression of the anisotropic stress?

$$\dot{\Psi}_{2,\nu\phi} = \dots - a\Gamma_T \Psi_{2,\nu\phi} \quad \Rightarrow \quad \Gamma_T = ???$$

Former works:

S. Hannestad and G. Raffelt arXiv:hep-ph/0509278, M. Escudero and M. Fairbairn arXiv:1907.05425 [hep-ph], M. Archidiacono and S. Hannestad arXiv:1311.3873

Extra γ^{-2} **suppression** due to co-linear decay products.

Our critique: Γ_{T} motivated from heuristic arguments, seems ad hoc (doubts also in A. Basboll, O. E. Bjaelde et al. arXiv:0806.1735)

Motivated assumptions (to obtain a closed set of equations)

1) Equilibrium distribution in steady-state phase (Maxwell-Boltzmann)

2) Separable ansatz: $\Psi_{i,\ell}(|\mathbf{k}|, |\mathbf{q}|) \simeq -\frac{1}{4} \frac{\mathrm{d} \ln \bar{f}_i}{\mathrm{d} \ln |\mathbf{q}|} \mathcal{F}_{i,\ell}(|\mathbf{k}|)$ Validity in the context of *Validity in the context of Validity in the context of Validity in the context of Under the context of Validity in the context of Validity in the context of Validity in the context of <i>Validity in the context of Under the context of Under the context of Validity in the context of Validity*

3) Same perturbation contrast in all species: $\mathcal{F}_{\nu H,\ell} = \mathcal{F}_{\nu l,\ell} = \mathcal{F}_{\phi,\ell}$

Motivated assumptions (to obtain a closed set of equations)

1) Equilibrium distribution in steady-state phase (Maxwell-Boltzmann)

2) Separable ansatz: $\Psi_{i,\ell}(|\mathbf{k}|, |\mathbf{q}|) \simeq -\frac{1}{4} \frac{\mathrm{d} \ln \bar{f}_i}{\mathrm{d} \ln |\mathbf{q}|} \mathcal{F}_{i,\ell}(|\mathbf{k}|)$ Validity in the context of *Validity in the context of Validity in the context of Validity in the context of IMO et al. arXiv: 1706.02123*

3) Same perturbation contrast in all species: $\mathcal{F}_{\nu H,\ell} = \mathcal{F}_{\nu l,\ell} = \mathcal{F}_{\phi,\ell}$

For realistic mass ordering:
$$\Gamma_{\rm T} \simeq \Gamma_{\rm dec}^0 \left(\frac{\Delta m_{\nu}^2}{m_{\nu H}^2}\right)^2 \left(\frac{m_{\nu H}}{E_{\nu H}}\right)^5$$
 Additional suppression

For realistic mass ordering:
$$\Gamma_{\rm T} \simeq \Gamma_{\rm dec}^0 \left(\frac{\Delta m_{\nu}^2}{m_{\nu H}^2}\right)^2 \left(\frac{m_{\nu H}}{E_{\nu H}}\right)^5$$
 Additional suppression

For realistic mass ordering:
$$\Gamma_{\rm T} \simeq \Gamma_{\rm dec}^0 \left(\frac{\Delta m_{\nu}^2}{m_{\nu H}^2}\right)^2 \left(\frac{m_{\nu H}}{E_{\nu H}}\right)^5$$
 Additional suppression

Which constraints on the neutrino life time from CMB?

 \rightarrow performed MCMC analysis with Planck 2018 data

For realistic mass ordering:
$$\Gamma_{\rm T} \simeq \Gamma_{\rm dec}^0 \left(\frac{\Delta m_{\nu}^2}{m_{\nu H}^2}\right)^2 \left(\frac{m_{\nu H}}{E_{\nu H}}\right)^5$$
 Additional suppression

Which constraints on the neutrino life time from CMB?

 \rightarrow performed MCMC analysis with Planck 2018 data

Which constraints on the neutrino life time from CMB?

\rightarrow performed MCMC analysis with Planck 2018 data

• Uniform coupling (\rightarrow 2-state approximation):

Appendix: 2-state system

Appendix: 2-state system

Cosmology bounds significantly weaker than previously stated. However, globally still the most stringent bounds.