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here: assume massless ϕ

Universal coupling:

New interactions:
● Invisible neutrino decay

● 2 ↔ 2 processes

Neutrino oscillations 
→ Standard model of particle physics has to be extended 

→ new particles/new interactions naturally appear

→ recoupling

for small couplings  invisible → decay dominant process 
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Motivation

II) Why cosmology?

Neutrino mass: 

γ-factor: 10³ – 10¹⁷  
→ strongly suppressed

(from arXiv:1111.0507, by U.F. Katz)

CMB: T
ν
~0.1 eV Cosmological probes can potentially 

give the strongest constraints

Life time gets time dilated, 
decay rate contracted
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Introduction: Cosmic Microwave Backround

How does neutrino decay impact the Cosmic Microwave 
Background (CMB)?

Recombination (~ 0.3 eV) → Universe gets transparent to photons

(Redshifted) photo of the early Universe

→ Fluctuations in the photon temperature/density:

metric

neutrinos

DMphotons

electrons protons

Thomson scattering

Coulomb scattering

(Planck 2018)

Decoupled since T~ 1 MeV
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Decompose phase-space perturbation into Legendre polynomials:

 → Neutrino Boltzmann hierarchy:

Perturbed Boltzmann equation: standard free-streaming case

free-streaming

   Let’s be more technical… → Cosmic perturbation theory:
1) Perturbed Einstein equation:

2) Perturbed phase-space distribution

Introduction: Cosmic Microwave Backround



 

Results: Equations

Neutrino decay  Calculate collision integral→Neutrino decay  Calculate collision integral→

G. Barenboim, J. Chen, S. Hannestad, IMO, T. Tram,Y. Wong  arXiv: 2011.01502

Background Boltzmann:



 

Results: Equations

Perturbation equations:

+ similar for ϕ

haven’t 
solved yet...
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In a nutshell

● We found an inconsistency in the perturbation equations in previous literature 
(→ violation of momentum conservation) (arXiv: 2011.01502)

● However, the main effect comes from the background equations:
G. F. Abellán et al, arXiv: 2112.13862 → missing term in perturbation eqs. not that important 

→ Former findings remain valid: Transfer of energy from matter to radiation sector
→ strong degeneracy between τ

0
 and m

ν
 

→ relaxation of cosmological neutrino mass bound
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relativistic decay
At background level: Transfer energy from one relativistic species to another 

→ no impact
At perturbation level, expect: decay and inverse decay isotropize ν-ϕ fluid 

→  suppression of anisotropic stress and higher multipoles 
→ enhancement of neutrino monopole/perturbed energy density 

→ enhancement of temperature anisotropies
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Former works:
S. Hannestad and G. Raffelt arXiv:hep-ph/0509278, M. Escudero and M. Fairbairn 
arXiv:1907.05425 [hep-ph], M. Archidiacono and S. Hannestad arXiv:1311.3873

What’s the rate of supression of the anisotropic stress?

Extra γ ² suppression ⁻ due to co-linear decay products.

Our critique: ΓT motivated from heuristic arguments, seems ad hoc
(doubts also in A. Basboll, O. E. Bjaelde et al. arXiv:0806.1735)
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Results: Relativistic decay

Solution of the background Boltzmann equations

Steady-state regime 
(larger coupling means steady-state 

lasts longer)

Motivated assumptions (to obtain a closed set of equations)

1) Equilibrium distribution in steady-state phase (Maxwell-Boltzmann)

2) Separable ansatz:  

3) Same perturbation contrast in all species: 

Validity in the context of 
ν-self-interactions demonstrated,

IMO et al. arXiv: 1706.02123

Extra γ-2 suppression

Significantly weaker bounds 
expected (~10³ weaker)

massless νl
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Appendix: 2-state system

For realistic mass ordering: 

Which constraints on the neutrino life time from CMB?

Additional 
suppression

→ performed MCMC analysis with Planck 2018 data
● Uniform coupling (→ 2-state approximation):

τ0 ≥ (2 → 6) x 107  s

● g23≠ 0 or g13≠ 0  (athmospheric mass gap):
τ0 ≥ (6 → 10) x 10⁵   s

●  g12≠ 0 (solar mass gap):
τ0 ≥ (400 → 500)  s

Warning:
Only valid for 

relativistic 
limit

mνH < 0.1 eV

Cosmology bounds significantly weaker than previously stated.
However, globally still the most stringent bounds.
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