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Takeaways

have improved the
sensitivity of oscillation experiments.

A Increasing algorithnm complexity introduces new
challenges in bias and uncertainty quantification.

Oscillations experiments must solve the bias and
@ uncertainty problem in ML to enable precision
w  measurements for next-generation experiments.
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What Is Machine Learning?
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Algorthms

whose performance

for a given task

mproves with experience
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AR

Artificial Neural Network Dimensional Reduction

Algorithms

Algorithms

Clustering Algorithms

Decision Tree Regression Algorithms Deep Learning
Algorithms Algorithms
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What Is Machine Learning?

Algorthms

whose performance

N for a given task

j B mproves with experience

same operating principle
ncreasing complexity_y-v~
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Target (function) approximation

A collection of connected units called artificial neurons or nodes

O

O

output

set values on each node, given O

some INput.

hidden
layers

Activation function and weights O
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Target (function) approximation

The accuracy of the output is quantified with a loss function

target
T

and the nodes are modified

accordingly. .....repeat ....

NN output

hidden
layers
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Target (function) approximation

The accuracy of the output is quantified with a loss function

A

and the nodes are modified

target
NN output

accordingly. .....repeat ....

R O hidden
OL OL 0z oL layers
ox; 0z Ox; < 0z
/ minimize

the losses

L& Fernanda Psihas Machine Learning for Neutrino Oscillations



ML in Signal ID & Parameter Estimation

/ / Traditional particle
3 e reconstruction.

O Losses
Extract information (features)

from the event which can

separate signal vs

background. O
Train NNs with these O O I
features from simulation P

ibraries.
hidden
O layers
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Event-by-event tagging of the nature e
210Po decay a is essential R e S
to the CNO detection.

L
L . L
g S Aol
{5 ‘— it e -
L

This is enabled by a Multi-layer perceptron. The %ﬂ{%‘ﬂysﬁ s

MLP exploits the scintillation time-decay G
differences from alpha and beta-like events. =

Experimental evidence of neutrinos produced in the
CNO fusion cycle in the Sun

The Borexino Collaboration

Nature 587, 577-582 (2020) | Cite this article

GENPER -\ ontion of BDT improves their

"4 K multi-site tagging of e CCve-
ike events, from 34.4% to
46.7% in efficiency.

(ICRC2021) Atmospheric oscillations with Super-Kamiokande
and prospects for SuperK-Gd - https://pos.sissa.it/395/008

https://arxiv.org/abs/1109.3262


https://pos.sissa.it/395/

NNs + Feature Extraction >

' P ;OO0
- | O
"y || - O
 — _
s y
POOLING POOLING onnecte
LAYER LAYER Layer
Raw data Low-level features Mid-level features High-level features
cleflE bLES ?Q--T Tm .
EELOmCE 9 - Convolutional neural networks or

nz.-«m o S
o CNNs eliminate the inefficiencies

coming from feature extraction steps
Upstream by disentangling from
reconstruction.

Allow the network to learn and
extract features rather than
selecting them a-priori.
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NOVA uses Convolutional
® Neural Networks to extract

NO~A- fegtures and classify events.

CNNs increased effective exposure
0y 50% compared to traditional |D
methods.

Training on neutrino beam and anti-

A convolutional neural network neutrino event classifier

A. Aurisano’, A. Radovic?, D. Rocco?, A. Himmel?®, M.D. Messier®, E. Niner?, G. Pawloski?,

F. Psihas®, A. Sousa' and P. Vahle?

Published 1 September 2016 « © 2016 IOP Publishing Ltd and Sissa Medialab srl

Journal of Instrumentation, Volume 11, September 2016

neutrino beam simulations separately

further increased thelr efficiency for
anti-ve signal by 14%

v Efficiency Improvement
Training Sample (ID > 0.9)
ve CC Signal v, CC Signal v NC Signal
14% 6% 10%
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Measurement of Neutrino Oscillations and Improvements from Deep
Learning. Fernanda Psihas https://inspirehep.net/literature/1672901


https://arxiv.org/abs/1604.01444

Incorporating Detector Geometry

Graph Neural Networks infer the directional correlations from
features and relative positioning of elements in the training data,

which is usetul for clustering populations.

Original Pooled network Pooled network Pooled network
network at level 1 at level 2 at level 3

Spherical CNNs use projections of 2D arrays
onto a spherical plane. Good example of
potential for adapting CNNs to detector

geometry.
https://arxiv.org/abs/1801.10130
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1e—3 Sensitivity (Simplified Analysis)

252
Graph NNs are natural for clustering =
PMT signals. GNN based reco. Yields 2
20% + resolution in energy & zenith. E
Expected sensitivity equivalent to :
25% more statistics. B
GNNs Neutrino Event Reconstruction. Neutrino 2022 poster. - Zi,?q(i”)z B 3:2236_3 oV IceCube Simulation
Rasmus Orsge. https://indico.kps.or.kr/event/30/contributions/785/ 2.38

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.60
sin?(623)

-»  T2Kis also using GNNs for removing cross-
talk & ghost hits from tracks in preparation for

y  The SuperFGD near detector for

[ = Improvements with respect to charge cuts.

S s \,;‘;“ GNN Charge Cut
e - s Track Other Track Other
o o @ rack Efficiency 94% 96% |Efficiency 93% 80%
X - 5 /. @ crosstalk Purity 96% 95% |Purity 80% 91%
: d e O ghost

ls)l O
(a) Prediction: voxels are colored based on the GNN predictions.

Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-

based neutrino detectors Sa'ul Alonso-Monsalve, et.al. https://arxiv.org/pdf/2009.00688.pdf THIS SLIDE: NOT YET IMPLEMENTED
FOR OSCILLATIONS


https://indico.kps.or.kr/event/30/contributions/785/

ML for neutrino oscillations

—Reconstruction

Sackground rejection/
classification

Data guality selections

Sias reduction
—araware triggering

\VionteCarlo generation
Accelerator operations
Data-size reduction

A Review on Machine Learning for Neutrino Experiments
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https://inspirehep.net/literature/1810029

Challenges of
applying ML




Maintaining sensitivity to new physics
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Maintaining sensitivity to new physics

This is a real fish!
Training can enhance or
suppress sensitivity to the
unexpected!
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Model Dependence & Uncertainty

The composition of the
training samples largely
Impacts network performance.

Are our algorithms reproducing
the model-based distributions

(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: we train with”?
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors:
0.98, Mammal: 0.98 0.97, Seashore: 0.97

https://arxiv.org/pdf/1807.04975.pdf Recognition in Terra Incognita, October 2018.
Conference: 15th European Conference on Computer Vision (ECCV 2018)
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Domain Adversarial Networks

A tool for bias reduction
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forwardprop  backprop (and produced derivatives)

Reducing model bias in a deep learning classifier using domain adversarial neural networks
in the MINERVA experiment. G. Perdue, et.al. https://doi.org/10.48550/arXiv.1808.0833



https://doi.org/10.48550/arXiv.1808.08332

Bias and Unexpected Learning

Robust physical-world attacks on Camouflage  Camouflage Art  Camoutlage Art
Graffiti (LISA-CNN)  (GTSRB-CNN)

deep learning visual classification.

https://arxiv.org/pdf/1707.08945.pdf. Robust Physical-
World Attacks on Deep Learning Visual Classification,
June 2018, CVPR DOI:10.1109/CVPR.2018.00175

Targeted-Attack Success 66.67%

amazon 98.7% 68.6% 100% 92.9%
Oraros 98.7% 77.5% 100% 93.6% Gender and racial bias in

I i i a facial recognition algorithms.

DARKER DARKER LIGHTER LIGHTER il =

MALES FEMALES MALES FEMALES "\Where can | see 3

Performance on Facial Analysis Task of Gender Classification { Shakespeare play

Joy Buolamwini / MIT Media Lab tap to edit

What would you like to
listen to?

Voice recognition accuracy issues, especially for multi-lingual speakers.
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Addressing ML challenges to neutrino experiments

... from the research

Bias
Find bias AND reduce bias AND quantify bias

There is NO “unbiased” training sample! (Bias to flat is stil bias)

SRS

Model Dependence
| There is no "'model independent” sample! (Non-physical models are still models)
Propagate uncertainties through both model training AND model usage

Design algorithms that minimize across known systematic uncertainties.

| & @

Sensitivity to new physics
Unsupervised learning to identify missing physics & unexpected learned features
Design tools for interpretability: test extracted features, principal component, etc.

Robust training
Compare algorithm performance in real data.
Design labeled-data training sets (test beams, known sources, etc.)

Design further tests of Data-MC robustness.
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Addressing ML challenges to neutrino experiments

... from the community

ML Is part of the particle physics toolkit. With increasing complexity,
iIncreasing scrutiny is required. Teach the use and interpretation of
ML as an essential skill of particle physics research.

Develop techniques for robustness metrics and systematic bias
assessment that can become the standard for machine learning
applications in particle physics.

Contribute to Al research by developing solutions to the bias and
uncertainty guestions of the industry broadly.
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Particle Physics is Uniquely Applicable to A.l.

DETECTOR DATA &8

S information-dense & un-labeled
Many times includes space correlations/topology.

SIMULATIONS

Produced at large-scale and reproducible
from physics principles.
Tunable to better/worse match real data.

MEASUREMENTS

Analyses that produce high precision measurements
~ocus on uncertainty quantification and bias
assessments.
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Conclusions

Machine learning techniques have and will continue 1o
'g' Improve our experimental sensitivities in neutrino physics.

Developing expertise as a community will enable us to
introduced by Increasing algorithm

complexity

Particle physics experiments are uniguely equipped to
for

next-gen oscillation experiments and the broader
community.
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Thank you for input regarding ML applications across experiments:
Yasuo Takeuchi, Nicola Rossi, James Mead, and T2K collaboration.




