

Update of the <u>results on solar</u> <u>neutrino</u> physics exploiting the <u>most recent</u> <u>Borexino</u> data

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

Nicola Rossi Laboratori Nazionali del Gran Sasso nicola.rossi@lngs.infn.it NOW 2022 2022, Sep 4-11

Solar Neutrinos: what & why

Main sequence Star modeling

Test of the Solar Standard Model (SSM) Neutrino flavor conversion

Standard Solar Model

Hydrogen burning in the Sun

II. CNO cycle (1:100) Dominant in stars > 1.3 M_☉

4

Solar neutrino fluxes

CNO and metallicity

The Borexino saga

1990: idea of a sub-Mev solar neutrino detector. A real time neutrino detection (G. Bellini, F. Calaprice, R. Raghavan, F. von Feilitzsch)
1995: CTF testing the record radiopurity ²³⁸U, ²³²Th < 10⁻¹⁶ g/g ¹⁴C/¹²C < 10⁻¹⁸
1996-1997: Approval of the experiment 2007-2021: data taking

Three Borexino strategies:

- clean materials
- purification
- analysis methods

The BOREXINO detector

Laboratori Nazionali del Gran Sasso – INFN (Hall C)

Rock: 3.800 m w.e. – muon flux ~ 1 m⁻²h⁻¹

During the construction

Now, after the thermal insulation

Borexino's pictures

From monitoring camera

The Borexino detector

Calibrations and features

- Pulse shape discrimination: α/β , e+/e-- Three-fold coincidence: (1) μ +¹²C \rightarrow ¹¹C + n; (2) n+H \rightarrow D; (3) ¹¹C(β ⁺)

The Borexino energy spectrum

Understanding the spectrum

Borexino timeline (data-taking)

From May 15th 2007 to October 3rd 2021

< From May 27th (2007) to October 3rd (2021) >

Solar neutrino results (as of 2020)

Neutrinos	References	Rate [cpd/100t]	Flux [cm ⁻² s ⁻¹]
рр	Nature 2014, Nature 2018, PRD 2019	(134±10) ₋₁₀ *6	(6.1±0.5) _{-0.5} ^{+0.3} x10 ¹⁰
⁷ Be	PLB 2008, PRL 2011, Nature 2018, PRD 2019	(48.3±1.1) _{0.7} +0.4	(4.99±0.11) _{-0.08} +0.06x10 ⁹
рер	PRL 2012, Nature 2018 PRD 2019	(2.65±0.36) _{-0.24} +0.15 [HZ]	(1.27±0.19) _{-0.12} +0.08x10 ⁸ [HZ]
⁸ B	PRD 2010, Nature 2018, PRD 2020	0.223 _{-0.022} +0.021	5.68 _{-0.41-0.03} +0.39+0.03x10 ⁶
hep	Nature 2018, PRD 2020	<0.002 (90% CL)	<1.8x10 ⁵ (90% CL)
CNO	Nature 2020	7.2 _{-1.7} +3.0	7.0 _{-2.0} +3.0x10 ⁸

Remarks on of the Borexino results

- First direct meausement of the **7Be**
- First direct detection of pp
- First direct detection of pep
- First direct detection of CNO neutrino
- Detection of ⁸B consistent with SuperK+SNO

Implications of Borexino results

II. Standard solar model

I. Precise measurement of the pp-chain flux.II. First CNO detection.

Low metallicity disfavored at - 1.8σ (pp chain) [Nature 2018] - 2.1 σ (pp chain + CNO) [Nature 2020] - and...

The CNO Strategy

Borexino spectrum after all data selection criteria

Strategy: 1. independent constraint of pep 2. independent constraint and ²¹⁰Bi

The ²¹⁰Bi constraint

(Mid-2015)

(Beginning of 2016)

CNO analysis (New results)

Analysis	OLD	UPDATE				
²¹⁰ Bi rate [cpd/100t]	11.5 ± 1.3	10.8 ± 1.0				
CNO rate [cpd/100t]	7.2 ^{+3.0} -1.7	6.7 ^{+2.0} -0.8				
CNO flux [10 ⁸ cm ⁻² s ⁻¹]	7.0 ^{+3.0} -2.0	6.6 ^{+2.0} -0.9				
Significance	5σ	7 σ				
LZ rejection Bx only	2.1 σ	3.1 σ				
Improved result						

Updating the table (2022)

Neutrinos	References	Rate [cpd/100t]	Flux [cm ⁻² s ⁻¹]
рр	Nature 2014, Nature 2018, PRD 2019	(134±10) ₋₁₀ *6	(6.1±0.5) _{-0.5} ^{+0.3} x10 ¹⁰
⁷ Be	PLB 2008, PRL 2011, Nature 2018, PRD 2019	(48.3±1.1) _{0.7} +0.4	(4.99±0.11) _{-0.08} +0.06x10 ⁹
рер	PRL 2012, Nature 2018 PRD 2019	(2.65±0.36) _{-0.24} +0.15 [HZ]	(1.27±0.19) _{-0.12} +0.08x10 ⁸ [HZ]
۶B	PRD 2010, Nature 2018, PRD 2020	0.223 _{-0.022} +0.021	5.68 _{-0.41-0.03} +0.39+0.03x10 ⁶
hep	Nature 2018, PRD 2020	<0.002 (90% CL)	<1.8x10⁵ (90% CL)
CNO	Nature 2020	6.7 _{-0.8} +2.0	6.6 _{-0.9} +2.0x10 ⁸

Implications of the new results

Global analysis

Tension between LZ and neutrino data

Metallicity determination

2σ tension between LZ metallicity and data

Recent results 1/2: directionality

 $\mathcal{R}(^7Be) = 51.6^{+13.9}_{-12.5} \text{ cpd}/100t$

Recent results 2/2: Eccentricity

Full Periodogram

Borexino & Sun: remarks

- Precision measurement of **pp chain** solar neutrino fluxes
- First detection of the **CNO neutrinos** (and now at **7**σ)
- New dataset $\Phi_{CNO} = 6.6_{-0.9}^{+2.0} \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}$
- **LZ** (AGSS09) disfavoured at **3.1σ** with respect to HZ (GS98)
- CNO from Borexino \rightarrow independent determination of the CN/H abundance (2 σ tension with LZ)

Thank you very much!

G. & V. Cocconi Prize 2021 - EPS

Pontecorvo Prize 2015 G. Bellini

Fermi Prize 2017 G. Bellini

