

Atmospheric neutrino oscillations in ICECUBE-DEEPCORE

James Vincent Mead

CARL\$BERG

FONDET

ICECUBE-DEEPCORE

- Products of ν -N interactions radiate Cherenkov photons (no $\nu/\bar{\nu}$ ID)
- 5160 optical sensors on 86 strings embedded within 1km³ of ice
- Down-facing 10" PMT in pressure sphere at depths 1450m 2450m

• DeepCore low-energy array

- Low-energy extension at 5x density in the cleanest ice (below 2100m)
- Higher quantum efficiency PMTs in digital optical modules (DOMs)
- mHz v_{atm} rate (neutrino detection every 15 minutes)
- Upgrade infill of DeepCore (2025-2026)
 - 700 new DOMs at 10x density on 7 strings in DeepCore region
 - New PMTs and first multi-directional modules (D-Eggs, mDOMs)
 - Overall 2x v_{τ} rate and 3x v_{μ} rate of DeepCore [arXiv:1908.09441]

• High-statistics era for v_{τ} physics

- Large Q^2 accesses CC to probe transitions to v_{τ}
- Only multi-channel experiment sensitive to $N_{\nu_{\tau}}$
- 86% of v_{τ} global data from DeepCore 3-year v_{atm}

Lepton flavour physics

- v_{τ} PMNS elements least constrained
- Major barrier to tests of PMNS unitarity

Atmospheric oscillations

• Upgoing atmospheric muon neutrinos

- Maximum ~13,000km baseline, L
- Near minimal v_{μ} survival for ~25 GeV

High-energy long-baseline oscillations

- Interactions exceed $v_{\tau,CC}$ threshold ~4 GeV
- DeepCore optimum 25 GeV, sensitive to 5 GeV
- Accesses same primary *L*/*E* as LBL experiments

UNIVERSITY OF COPENHAGEN

Oscillations analyses

 $v_{\mu,CC}$

- Atmospheric flux:
 - Dominated by v_{μ}
 - Negligible prompt v_{τ}
- v-N interactions:
 - Predominantly DIS
 - Photons propagate in ice
- Hits to event classes:
 - *μ* produces a 'track'
 - $e / \tau / h$ produce a 'cascade'
- Binned analysis:
 - Energy, Zenith, PID
 - Fit using MC templates

many few

Next generation 8 year sample

• New developments

UNIVERSITY OF

COPENHAGEN

- Individual PMT pulse charge calibration
 - → SPE identification and charge independent analysis
- Event selection
 - Backgrounds reduced by factor of $O(10^6)$
 - Low-level muon filter & data-driven cuts
 - Noise cleaning & muon rejection LightGBM classifiers
- Reconstruction & PID
 - High-fidelity reconstruction near end of the selection chain
 - Low-energy reconstructions: SANTA & RetroReco [arXiv:2203.02303]
 - Classifier discriminating $v_{\mu,CC}$ from all other topologies
 - Tracks versus cascades: XGBoost BDT

Current generation 9.3-year high-statistics event selection & PID

[arXiv:1806.04140]

- Cosmic ray spectrum and hadronic model
- Meson production, decay and (re)interaction & atmospheric density

Cross-sections

- Axial mass uncertainties for quasi-elastic and resonance events
- DIS transition from low-*E* (GENIE) to high-*E* (CSMS) & PDFs [arXiv:1510.05494] [arXiv:1106.3723]
- Ice & Detector properties
 - Radioactive noise and individual charge calibration for every PMT
 - Optical properties across ice layers and refrozen drill column
 - Angular dependence of the DOMs' photon acceptance

~40 systematic uncertainties investigated ~1/2 included as nuisance parameters in fits of final analyses Continuous 6D hypersurfaces fitted per analysis bin

Standard oscillations

• DeepCore 3-year sample

- ν_{μ} disappearance (2017) [arXiv:1707.07081]
- ν_{τ} appearance (2019) [arXiv:1901.05366]
- DeepCore 8-year sample
 - v_{μ} disappearance*
 - OscNext verification Fast reconstructions ~20k 'clean' tracks

Corroborating full measurement

Low photon scattering based reconstruction Result consistent with LBL experiments Best fit at near maximal mixing

$$\sin^2 \theta_{23} = 0.505$$
, $\Delta m_{32}^2 = 2.41 \times 10^3 eV^2$

OscNext-FLERCNN New classifiers and event selection ~200k tracks and cascades

CNN reconstruction $O(10^3)$ times faster than SOTA likelihood-based methods

Standard oscillations

• DeepCore 3-year sample

- v_{μ} disappearance (2017) [arXiv:1707.07081]
- ν_{τ} appearance (2019) [arXiv:1901.05366]
- DeepCore 8-year sample
 - v_{μ} disappearance*
 - OscNext verification
 - OscNext-FLERCNN
 - v_{μ} disappearance + v_{τ} appearance*
 - OscNext high statistics Full 8D reconstruction ~200k tracks and cascades
 - Neutrino mass ordering*
 - Earth tomography*

Atmospheric oscillation parameters Comparable mixing angle and mass splitting precision to LBL experiments

> $ν_τ$ normalisation ≤15% precision in $N_{ν_τ}$ >2x current world best

Non-standard interactions

• **DeepCore 3-year sample** [arXiv:2106.07755]

- Matter effects
 - Coherent forward scattering sensitive to *N_e* in earth's core
- New physics
 - Enhancement to SM matter effects through new heavy mediator
- Experimental first
 - Constraining LFU violating and flavour changing simultaneously

matter potential

 $a \equiv 2\sqrt{2}G_F N_e E$

electron density

$$H = \frac{1}{2E} \begin{bmatrix} U_{\rm PMNS} \begin{pmatrix} 0 & & \\ \Delta m_{21}^2 & \\ & \Delta m_{31}^2 \end{pmatrix} U_{\rm PMNS}^{\dagger} + a \begin{bmatrix} 1 \neq \varepsilon_{e\mu} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\mu\tau}^* \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau}^* \end{bmatrix},$$

LFU violating

Unstable sterile neutrinos

- DeepCore 8-year sample [arXiv:2204.00612]
 - Tension in global fits to eV steriles with SBL experiment anomalies
 - 3+1+decay model
 - v_4 decay dampens oscillations
 - Tensions resolved if unstable v₄ state decaying over LBLs
 - First unstable steriles search at IceCube

- Conclusions pending further study
 - No evidence of preference over standard 3ν paradigm
 - Weak preference over 3+1 scenario
 - Best fit lifetime: $\tau \sim 10^{-15}$ s
 - Tension with SBL data remains

Beyond Standard Model

*WIP

Summary

• Oscillations in DeepCore

- Complimentary of and competitive with accelerator experiments
- Offers leading constraints on (non-)unitarity through v_{τ} -normalisation
- Extensive BSM program with complementary studies are higher energies

• Next generation of analysis

- 8 years of detector live-time $\rightarrow O(10^5) v_{\text{atm}}$ interactions
- New calibration, simulation, reconstruction, PID, systematics and analysis software
- Charge-independent samples, off-signal regions, data-driven background classification

• Next generation of detector

- The Upgrade greatly enhances DeepCore's oscillations sensitivity and statistical power
- Conservative estimates predict world-leading results within 1 year of data-taking
- Set to inherit new SOTA reconstruction & PID (FreeDOM, DynEdge) and ice-modelling (Birefringence) [arXiv:2208.10166] [Neutrino 2022] [GraphNet Git] [arXiv:2107.08692]

High statistics High energies Long-baselines Dense matter profile All flavour probe

- Fast directional reconstruction fitting light cone to DOM hits along a string
- Hits not consistent with fitted light cone rejected as scattered light
- *RetroReco reverse table reconstruction*
 - Reverse simulated photon emission used to approximate LLH tables
 - Provides use of scattered and unscattered light in 8D event model

CARL§BERG

FONDET

Oscillations above 500GeV

IceCube 8-year sample ~300k tracks (0.5 – 10 TeV) Complementary to DeepCore

- 3+1 steriles 0(eV)
 - Test for matter-enhanced oscillation
 - Mass splitting between $0.01 \text{ eV}^2 100 \text{ eV}^2$
 - Best fit: $\sin^2(2\theta_{24}) = 0.10$, $\Delta m_{41}^2 = 4.5 \text{eV}^2$
 - Consistent with no sterile neutrino hypothesis
 - Non-Standard interactions
 - Probing Re and Im components of $\epsilon_{\mu\tau}$
 - Strongest constraint on any NSI parameter from any oscillation channel to date
 - Results consistent with no NSI

Earth crossing v_{τ} appearance

Upgrade

• The same simulated 30 GeV $\nu_{\mu} \rightarrow \mu$ -track as viewed by each setup

Matter effects for NMO

• The same simulated 3.8 GeV $\nu_{\mu} \rightarrow \mu$ -track as viewed by each setup

Backup

World-leading $N_{\nu_{\tau}}$ sensitivity in one year

Competitive mass splitting and mixing angle in three years

- Huge boost in statistical power from more than doubled v_{atm} rate
- Accessing dominant upgoing oscillation signal at lower energies
- Conservative treatment for parameterised reconstruction and PID
- Sensitivities based on fits to 3-year live-time Upgrade only volume projections

UNIVERSITY OF

COPENHAGEN

Upgrade complementarity

- Live-time for JUNO+Upgrade to obtain 5 σ sensitivity of NMO as $f(\text{true sin}^2 \theta_{23})$ and JUNO's $\sigma(E)$
- Yellow squares mark nominal values, contours trace parameter combinations required time in years

• New physics with leptons / flavour universality

- $(g-2)_{\mu}$ points to lepton sensitive NP (4.2 σ)
- LHCb flavour anomalies $\rightarrow P'_5 \Rightarrow 3.3\sigma$, $R_K \Rightarrow 3.1\sigma$
 - Singling out muons' via C₉
 - Leptoquarks or new heavy mediator?
 - Ongoing $b \rightarrow s \tau^+ \tau^-$ and LFV measurements with τ channels

IceCube's role

- LBL v_{μ} and SBL v_{e} experiments lead the way in neutral lepton sector
- Entering precision era of neutrino oscillations physics
- DeepCore provides unique probe of PMNS unitarity
 - Crucial to global fits of v_{τ} matrix elements
 - Constraining multi-channel NSI, 4th generation neutrinos and modified mixing

[CERN seminar - LHCb]