

Ostuni, BR, Italy

NOW 2022

CEvNS and COHERENT

Igor Bernardi COHERENT Collaboration ibernard@vols.utk.edu

09-September-2022

Outline

- Theoretical overview
 - CEvNS
- COHERENT Detectors
 - CsI
 - CENNS10 (LAr)
 - Liquid Argon (1 ton)
 - D₂O
 - NaI-185/NaIvETe
 - Ge-mini
 - Nubes
 - NuThor

CEvNS (Coherent Elastic Neutrino-Nucleus Scattering)

CEvNS cross section comparison

Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL)

Ideal environment to study CEvNS:

- 1.4MW Spallation Neutron Source used as neutrino source
- Pulsed neutrino source (most powerful in the world)
- ~10²⁰ Protons on Target per day, ~9% of protons producing 3 neutrinos each
- Ideal neutrino energies (<53MeV) for the study of CEvNS.

~1 GeV e⁺ 60 Hz pulse Decay at res

09-Sep-2022

D20

Nal 185

Neutrino Alley @ SNS/ORNL

Detectors in Neutrino Alley are 20~30 meters from the target, and the distance is completely filled with steel, gravel, and concrete; thus protecting from SNS neutrons.

> Concrete overburden from above eliminates hadronic component of cosmic rays and attenuates muon flux by a factor of 3

> > Ge-mini

NalveTe

NuThor

After extensive BG studies we found a well protected location at the SNS basement

coherent

Nubes (neutrino cubes): Measured NINs (neutrino induced neutrons)

CENNS10

09-Sep-2022

Ostuni, BR

CsI detector – first observation of CEvNS

- Years of studies and simulations
- Experimental assembly at Neutrino
 Alley took less than 24h (detector
 preassembled at University of Chicago)
- 15 months collecting data before first results were published \rightarrow observation of CEvNS
- 43 years after prediction by Daniel Freedman
- Updated results published last month
- Paved the way for further
 detectors, measurement of CEvNS cross
 sections with different elements, and
 serves as a probe for different kinds of
 new physics, such as DM, oscillations,
 NSI, etc.

2017: COHERENT observed CEvNS using a 14.6kg CsI[Na] detector at SNS-ORNL – 40 years since theoretical prediction by D. Z. Freedman (PRD 9, 1974)

7

09-Sep-2022

•

CsI detector – CEvNS results

8

09-Sep-2022

CENNS 10 – Observation of CEvNS in Ar

- Built at Fermilab (J. Yoo et al)
- Restored at Indiana University in 2016
- Engineering run: Jan July 2017 at ORNL
- Rebuilt in ORNL with new PMTs
 - 2x 8" Hamamatsu PMTs, 18% QE at 400 nm
- Data taking started July 2017
- 24kg LAr

09-Sep-2022

11

CENNS 10 results

09-Sep-2022

Future Upgrade – 1 ton LAr detector

Our collaborators have funds from National Research Foundation of Korea to build this detector!

24kg to 1ton: same spot!

Expected 3000 CEvNS events per year, plus charged current events. High statistics, low background.

Tackling current systematical uncertainties on neutrino flux

- Largest systematical uncertainty is in knowledge of neutrino production (~10%).
- D_2O based detector offers opportunity to calibrate neutrino flux from the SNS because of the well-known cross-section of neutrino-deuteron charged current interaction.
- Neutrino flux uncertainty: As low as 2% after a few years of data.

2021 JINST 16 P08048

D₂**O** detector

- ~600kg of D_2O contained in acrylic vessel
- 12 8" high gain Hamamatsu PMTs
- Cherenkov light as a mode of detection
- H_2O "tail catcher" for electrons
- Outer stainless steel vessel
- Lead shielding
- Hermetic veto system outside lead shielding
- Detector located ~20m from the SNS target
- Will measure neutrino-deuterium interaction rate
 - therefore measure neutrino flux because of well known neutrino deuterium charge current interaction cross section.
- Additional goal: measure for the first time neutrinooxygen CC cross section in the energy range relevant to the Supernovae neutrino detection
- Engineering run (with H_2O only) has already started. Heavy water run expected to start first half of 2023.

100 cm Diameter

D₂**O Detector performance simulations**

09-Sep-2022

Ostuni, BR

D₂**O** detector current status

- Engineering run has already started – regular water only, no shielding or veto panels.
- Acrylic vessel (for heavy water) should be installed in 2023.
 - We already have the required amount of D_2O
- Data acquisition started on light water.

09-Sep-2022

Ostuni, BR

Possible search of new physics

Plots include current CsI data as well as simulated predicted data to be collected from future **and future detectors**. Ge and Ar detectors. On the left, constraints are based on current uncertainty. On the right, how much more precise data will be after neutrino flux normalization from D₂O detector.

09-Sep-2022

Germanium PPC array (Ge-mini)

- Estimation of 500 600 CEvNS events/year in a ~18 kg array.
- Detector will have great resolution
- Electronic noise from detector + preamp limited to < 150 eV FWHM
 - Results in an energy threshold of ~0.4 keVee, roughly 2-2.5 keVnr.
- Cryostat already available
- Quenching factor well understood
- All parts already at ORNL

18

THE UNIVERSITY OF

09-Sep-2022

Large NaI Detectors Array (NaIvETe)

09-Sep-2022

Ostuni, BR

Nubes – Neutrino Cubes

Nubes was a liquid scintillator detector that observed NINs (neutrino induced neutrons), via inelastic scattering.

BRNs (beam-related neutrons) were shielded by water blocks, but SNS neutrinos interacted with Pb and generated neutrons: liquid scintillator cells were coupled with PMTs.

NuThor

Very exciting development! Expect to hear more about this project in the future! Neutrino-Induced on Fission on Thorium

Neutrino Induced Fission (NIF) has never been observed. Tyler Johnson's (Duke U.) idea.

THE UNIVERSITY OF

09-Sep-2022

COHERENT Collaboration

