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CEVNS (Coherent Elastic Neutrino-Nucleus Scattering)

Our suggestion may be an act of hubris, because A @ scatte_red
the inevitable constraints of interaction rate, res- = neutrino
olution, and background pose grave experimental
difficulties for elastic neutrino-nucleus scattering, N
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CEVNS cross section comparison
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CEvNS is dominant at lower
energies, due to larger de
Broglie wavelength.
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Spallation Neutron Source (SNS) at ‘@,’

Oak Rldge National Laboratory (ORN L) Located in Tennessee - USA
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Ideal environment to study CEVNS:

- 1.4MW Spallation Neutron Source used as neutrino source

- Pulsed neutrino source (most powerful in the world)

- ~102° Protons on Target per day, ~9% of protons producing 3
neutrinos each

Ideal neutrino energies (<53MeV) for the study of CEVNS.
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After extensive BG
studies we found a
well protected
location at the SNS

Detectors in Neutrino Alley are
20~30 meters from the target, and
the distance is completely filled with
steel, gravel, and concrete; thus
protecting from SNS neutrons.

basement
Concrete overburden from
above eliminates hadronic
component of cosmic rays Nubes (neutrino cubes):
Nal 18 D20 and attenuates muon flux NuThor NalveTe ( )

Measured NINs (neutrino
induced neutrons)
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Csl detector — first observation of CEVNS

— Iy

e , - : : ——
= * Years of studies and simulations 2017: COHERENT
- Experimental assembly at Neutrino observed CEVNS using a
Alley took less than 24h (detector 14.6kg Csl[Na] detector
-l preassembled at University of Chicago) | at SNS-ORNL — 40
P - 15 months collecting data before first years since theoretical
results were published > observation of | Prediction by D. Z.
CEVNS Freedman (PRD 9, 1974)
S » 43 years after prediction by Daniel
Freedman ;

« Updated results published last month
.4 * Paved the way for further

= <= - e

5 I i = — :- i P detectors, measurement of CEVNS cross A
2 ‘ . - : . ) . > . 9 ) 2
- , | ¢ sections with different elements, and w A
| / serves as a probe for different kinds of -' '

new physics, such as DM, oscillations,
NSI, etc.
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Csl detector — CEVNS results
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Cross section (107 cm?)
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COHERENT Measurements

SM Prediction
FF = unity
Klein-Nystrand FF
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Updated results:
PRL 129, 081801 (2022)

Csl detector — CEVNS new results
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Largest systematic
uncertainty is due to
neutrino flux uncertainty
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FIG. 1.
axes. The CEvVNS distribution has been decomposed into each flavor of neutrino flux at the SNS.
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Matching SM within
uncertainties
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CENNS 10 — Observation of CEVNS In Ar

 Built at Fermilab (J. Yoo et al)
» Restored at Indiana University in 2016
* Engineering run: Jan — July 2017 at ORNL

* Rebuilt in ORNL with new PMTs
e 2x 8” Hamamatsu PMTs, 18% QE at 400 nm

 Data taking started July 2017

7 -
4 i
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PRL 126, 012002 (2021)

CENNS 10 results
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Future Upgrade — 1 ton LAr detector

simulated CEVNS + background rates

t AAr
steady-state gamma
[ steady-state argon-39
B er

unsubtracted data,
atmospheric Ar

Our collaborators
have funds from

- ) National

EN inderground argon. B oo Research

2 B een °
Foundation of
B : Korea to build

this detector!

24kg to 1ton: same spot!

energy [keVee]

Expected 3000 CEVNS events per year, plus charged current events.
High statistics, low background.
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Tackling current systematical uncertainties on neutrino flux

 Largest systematical uncertainty is in knowledge of neutrino production (~10%).

* D,O based detector offers opportunity to calibrate neutrino flux from the SNS
pecause of the well-known cross-section of neutrino-deuteron charged current
Interaction.

 Neutrino flux uncertainty: As low as 2% after a few years of data.
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2021 JINST 16 P0O8048

D,O detector

» ~600kg of D, 0 contained in acrylic vessel 100 cm Diameter
* 12 8” high gain Hamamatsu PMTs R
« Cherenkov light as a mode of detection : '
* H,0 “tail catcher” for electrons

» Quter stainless steel vessel

» Lead shielding

« Hermetic veto system outside lead shielding
» Detector located ~20m from the SNS target

Wil measure neutrino-deuterium interaction rate

« therefore measure neutrino flux because of well known
neutrino deuterium charge current interaction cross
section.

« Additional goal: measure for the first time neutrino-

oxygen CC cross section in the energy range relevant to
the Supernovae neutrino detection

« Engineering run (with H,O only) has already started.
Heavy water run expected to start first half of 2023.

220 cm
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D,O Detector performance simulations
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D,O detector current status

How it currently looks

* Engineering run has
already started — reqular 3/ S
water only, no shielding [ 4Tl 0 =LA
or veto panels. S e AR LS

* Acrylic vessel (for heavy \
water) should be
Installed in 2023.

« \We already have the
required amount of D,O

 Data acquisition started
on light water.
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Possible search of new physics
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Plots include current Csl data as well as simulated predicted data to be collected from future
Ge and Ar detectors. On the left, constraints are based on current uncertainty. On the right,
how much more precise data will be after neutrino flux normalization from D,O detector.
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After v flux is
normalized!

Expected precision
difference after neutrino
flux normalization.

Data from D20 detector
will impact data analysis
from previous, current,
and future detectors.
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Germanium PPC array (Ge-mini)

 Estimation of 500 — 600 CEVNS
events/year in a ~18 kg array.
* Detector will have great
resolution
* Electronic noise from detector +
preamp limited to < 150 eV
FWHM
e Results in an energy
threshold of ~0.4 keVee,
roughly 2-2.5 keVnr.
* Cryostat already available
e Quenching factor well
understood
 All parts already at ORNL

09-Sep-2022
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Large Nal Detectors Array (NalvETe)

Transition from 185 kg to 2 ton array of Nal detectors:
Detectors are available
Measured Quenching Factors at TUNL
Potential to detect both CEVNS and CC on lodine
Requires dual gain bases to look for CEvNs and CC

First of seven modules
is deployed, and more
modules soon!
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dependency
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Nubes — Neutrino Cubes

Nubes was a liquid scintillator
detector that observed NINs
(neutrino induced neutrons),
via inelastic scattering.

\\‘\l l“ll| | ‘

BRNs (beam-related neutrons)
were shielded by water blocks,
but SNS neutrinos interacted
with Pb and generated
neutrons: liquid scintillator cells

were coupled with PMTs.
09-Sep-2022 Ostuni, BR




NuThor

Very exciting development!
Expect to hear more about this
project in the future!

Neutrino
Induced
Fission (NIF)
has never been
observed. Tyler
Johnson’s

Ostuni, BR

Neutrino-Induced on Fission on Thorium
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