

Rosa Marina (Ostuni, Italy)

September 4 - 11, 2022

September 9th, 2022

Majorana neutrinos and rare decays: where we are going

Andrea Giuliani IJCLab, Orsay, France

Which signature and which nuclei?

Sum energy spectrum of the two electrons

 $\mathbf{Q}_{\beta\beta}$: energy available for the products

Introduction from

Giovanni Benato, this morning, this conference

In this review, I will consider

- mass mechanism
- "Traditional" nuclear matrix elements calculations with **no quenching**

Which signature and which nuclei?

Sum energy spectrum of the two electrons

 $\mathbf{Q}_{\beta\beta}$: energy available for the products

Introduction from

Giovanni Benato, this morning, this conference

In this review, I will consider

- mass mechanism
- "Traditional" nuclear matrix elements calculations with **no quenching**

Which signature and which nuclei?

Which half-lives? (mass mechanism)

How many counts?

How many counts?

How many counts?

Expand the source, abate the background

Source

2 valu

- Large source \rightarrow tonne scale \rightarrow > 10²⁷ nuclei
- **Isotopic enrichment**
- \rightarrow the isotopic abundance is artificially increased to > 80%
 - \rightarrow Isotope selection

Maximize efficiency (3)

 \rightarrow The option in which the source is separated from the detector is abandoned for next-generation experiments

Background

- \rightarrow Standard common actions
- (1) Natural radioactivity (α , β , γ radiation)

Levels < 1 μ Bq/kg are required \leftrightarrow Ordinary material ~ 1-100 Bq/kg

(2) Cosmic muons

Underground laboratory \rightarrow Muon flux reduction by > 10⁶

(3) Neutrons

Generated by rock radioactivity and muons Quality and depth of the underground laboratory **Dedicated shieldings** are often required

Cosmogenic induced activity (long living) (4)

Delayed effect of the cosmic radiation (activation) **Choice of detector materials – Storage of material underground**

\rightarrow Specific actions depending on the technology

- High energy resolution
- Particle identification
- Tracking / Event topology
- Multi-site vs. single-site events
- Surface vs. bulk events
- Fiducial volume
- Active shielding
- Final-state nucleus identification

Isotopic enrichment

- Russia is by far the main isotope provider for current experiments
 → reliable and high-quality supply chain
- Some $0\nu\beta\beta$ isotopes procured from a **European producer** (⁸²Se, ⁷⁶Ge)
- War against Ukraine \rightarrow impossible to procure isotopes from Russia for Western countries
- Intense contacts with a European producer for a Russia-alternative isotope supply (⁷⁶Ge,¹⁰⁰Mo, ¹³⁶Xe)
- **Chinese-led projects** could continue to procure $0\nu\beta\beta$ isotopes from Russia
- Experiments using or considering to use natural isotopic composition sources: Te (34% ¹³⁰Te): CUORE, SNO+, THEIA, JUNO Xe (8.9 % ¹³⁶Xe): DARWIN

Deployment of an arsenal of technologies

Deployment of an arsenal of technologies

Deployment of an arsenal of technologies

Implementation in tens of experiments

•		NvDEx	High pressure TPC	⁸² Se
Legenda	Large source mass	ZICOS	Dilution in liquid scintillator+Cherenkov	⁹⁶ Zr
Legenda		SNO+	Dilution in liquid scintillator	¹³⁰ Te
	Easily scalable	SNO+-Phase II	Dilution in liquid scintillator	¹³⁰ Ie 130 T ((, , +) 136)(,
(color code)		Inela	Dilution in liquid scintillator+Cherenkov	¹³⁰ Te(nat)- ¹³⁰ Xe
		JUNU	Dilution in inquid scintillator	multi
		Kaml AND-Zon 400	Dilution in liquid scintillator	136V.0
		KamLAND-Zen 400	Dilution in liquid scintillator	13670
	l Fluid	Kaml AND2-Zen 800	Dilution in liquid scintillator	136%
•		FX0-200	Liquid TPC	136%
Completed	embedded	nFXO		¹³⁶ Xe
compieted	CIIINCUUCU	NFXT-White	High pressure TPC	¹³⁶ Xe
Data taking	COURCO	NEXT-100	High pressure TPC	¹³⁶ Хе
Dutu tuning	source	NEXT-HD / NEXT-BOLD	High pressure TPC	¹³⁶ Хе
Construction /		PANDAX-III	High pressure TPC	¹³⁶ Xe
Commissioning		AXEL	High pressure TPC	¹³⁶ Xe
Commissioning		DARWIN	Double-phase TPC	¹³⁶ Xe(nat)
Advanced R&D sometimes	at	LZ	Double-phase TPC	¹³⁶ Xe(nat)
CDR/TDR lev	vel	R2D2	High pressure TPC	¹³⁶ Xe
R&D		CANDLES-III	Scintillators	⁴⁸ Ca
		CANDLES-IV	Scintillating bolometers	⁴⁸ Ca
		MAJORANA DEM.	Semiconductor detectors	⁷⁶ Ge
SuprNEMO Tracking ⁸² Se	High energy resolution	GERDA	Semiconductor detectors	⁷⁶ Ge
demonstrator + Calorimeter	/ officionav	LEGEND-200	Semiconductor detectors	⁷⁶ Ge
	/ eniciency	LEGEND-1000	Semiconductor detectors	⁷⁶ Ge
		CDEX-300 / CDEX-1000	Semiconductor detectors	⁷⁶ Ge
	Crustel	SELENA	Semiconductor detectors	⁸² Se
	Crysta	CUPID-0	Scintillating bolometers	⁸² Se
e -		CUPID-Mo	Scintillating bolometers	¹⁰⁰ Mo
Source <i>≠</i> Detector	embedded	AMORE-I	Scintillating bolometers	¹⁰⁰ Mo
		AMORE-II	Scintillating bolometers	¹⁰⁰ Mo
	source		Scintillating holomotors	100 Mo
	SOURCA			100-
TGV-2 FC/FC B+/FC ¹⁰⁶ Cd	source	CUPID Reach / CUPID-1T	Scintillating bolometers	¹⁰⁰ Mo
TGV-2 EC/EC β^+ /EC ¹⁰⁶ Cd	source	CUPID Reach / CUPID-1T COBRA	Scintillating bolometers Semiconductor detectors	¹⁰⁰ Mo ¹¹⁶ Cd
TGV-2 EC/EC β^+ /EC ¹⁰⁶ Cd	source	CUPID Reach / CUPID-1T COBRA TIN-TIN	Scintillating bolometers Semiconductor detectors Bolometers	¹⁰⁰ Mo ¹¹⁶ Cd ¹²⁴ Sn
TGV-2 EC/EC β^+ /EC ¹⁰⁶ Cd	source	CUPID Reach / CUPID-1T COBRA TIN-TIN CUORE	Scintillating bolometers Semiconductor detectors Bolometers Scintillating (position consisting holometers	¹⁰⁰ Mo 116Cd ¹²⁴ Sn 130Te 1000 4 a 130Ta
TGV-2 EC/EC β^+ /EC ¹⁰⁶ Cd	source	CUPID Reach / CUPID-1T COBRA TIN-TIN CUORE CROSS	Scintillating bolometers Scintillating bolometers Semiconductor detectors Bolometers Bolometers Scintillating/position sensitive bolometers	¹⁰⁰ Mo 116Cd ¹²⁴ Sn 130Te ¹⁰⁰ Mo ⁻¹³⁰ Te

Double beta decay: status and prospects

Most promising next-generation experiments

7 research lines /	Large source mass	1	KamLAND-Zen 400 \rightarrow KamLAND-Zen 800 \rightarrow KamLAND2-Zen	
experiments are more	Fluid embedded	2	SNO+ \rightarrow SNO+-phase II	
 4 fluid embedded 		3	EXO-200 → nEXO	
 3 crystal embedded Multi astrophysics Multi Multi astrophysics 	source	4	NEXT-White \rightarrow NEXT-100 \rightarrow NEXT-HD / NEXT-BOLD Completed Data taking Construction /	
Parameters January			Commissioning Advanced B&D	
Processor interactions Processor interactions Particle interaction	High energy resolution / efficiency	5	$\left. \begin{array}{c} \text{GERDA} \\ \text{MAJORANA dem.} \end{array} \right\} \rightarrow \text{LEGEND-200} \rightarrow \text{LEGEND-1000} \\ \end{array}$	
	Crystal embedded source	6	$\begin{array}{c} \textbf{CUPID-Mo} \\ \textbf{CUPID-0} \\ \textbf{CUORE} \end{array} \end{array} \rightarrow \textbf{CUPID} \rightarrow \textbf{CUPID Reach / CUPID 1t}$	
Hout time Ball Aller Control C		7	AMORE-I \rightarrow AMORE-II	

Fluid embedded source Liquid scintillator

Koichi Ichimura, this afternoon, this conference

KamLAND-Zen (400 and 800)

KamLAND-Zen 400 → KamLAND-Zen 800 → KamLAND2-Zen

KamLAND-Zen 400/800 – Kamioka, Japan $T_{1/2} > 2.3 \times 10^{26}$ y 350/745 kg of ¹³⁶Xe – Leading experiment $m_{\beta\beta} < 36 - 156$ meV

Concept

Enriched Xenon diluted (3 wt%) in liquid scintillator exploiting the existing KamLAND detector with the addition of a nylon balloon

- Scalability increase diameter of nylon inner balloon (IB)
- ¹³⁶Xe On-off
- Energy resolution: ΔE(σ) ~7%/VE(MeV) 4.5%@Q_{ββ}
 Single event position Vertex resolution 15 cm/ VE(MeV)
- Single event position Vertex resolution 15 cm/ vE(MeV)
 Background:
- $2\nu\beta\beta$ decay of ¹³⁶Xe
- Xe-LS, IB and outer-LS radioactive impuritities
- Cosmogenic: muon-spallation

KamLAND-800 (started Jan 2019)

Major new points with respect to KamL-400

- More isotope 745 kg of ¹³⁶Xe
- New balloon (2X larger, more radiopure)
- Reduction of ¹²C-spallation by analysis
- Characterization of ¹³⁶Xe spallation
- Improve KamL-400 results by ~4X in 5 y

Completed Data taking Construction / Commissioning Advanced R&D R&D

Koichi Ichimura, this afternoon, this conference

KamLAND2-Zen

Completed Data taking Construction / Commissioning Advanced R&D R&D

Possibility to include scintillating inorganic crystals embedding other 2β candidates

Ambitious long-term developments: Super-KamLAND-Zen – a few tens of tons of Xe in a 20 kton detector

SNO+

Data taking Construction Commissioning Advanced R&D R&D

Completed

 $SNO+ \rightarrow SNO+-phase II$

Concept

arXiv:2104.11687v2

Reuse the acrylic vessel, the PMT array and the electronics of the SNO detector at SNOLAB with a new target: natural-Te-loaded liquid scintillator

- (LAB + 2g/I PPO "fluor")
 - 780 tons of scintillator
 - 3.9 tons of natural tellurium
 - \rightarrow **1.3 tons of** ¹³⁰**Te** (34% I.A.)
- \rightarrow Scintillator purification system

→ Novel metal loading technique

S.B. Biller – SNOLAB Future Project Workshop – May 2021

× Pure heated sol. 2g/L PPC

O Pure DDA sol, 2g/L PPC

• Pure DDA sol, 6g/L PPC

Phase II curve using

boosted PPO

0

X

SNO+ consists of **three phases**

- **Pure-water phase** (from May 2017) \rightarrow measurement of the external background \rightarrow physics results (⁸B v's, invisible nucleon decays)
- **Liquid scintillator phase** without Te (ongoing) \rightarrow measurement of scintillator background
 - \rightarrow U, Th concentration ~ 5×10⁻¹⁷ g/g
 - \rightarrow Background level low enough for $0\nu\beta\beta$
- **Te phase** (from 2024) Study of $2\nu\beta\beta$ and $0\nu\beta\beta$

$\Delta E = 190 \text{ keV FWHM } @Q_{\beta\beta}$

Background budget and sensitivity

Completed Data taking Construction / Commissioning Advanced R&D R&D

SNO+ and evolutions

SNO+ \rightarrow **SNO+**-phase II \rightarrow THEIA, ZICOS

Other large liquid-scintillator projects

Completed Data taking Construction / Commissioning Advanced R&D R&D

Fluid embedded source Xenon TPCs

Construction nEXO Commissioning Advanced R&D R&D nEXO – SNOLab $EXO-200 \rightarrow nEXO$ Major upgrades with respect to EXO-200 nEXO is built on the successful EXO-200 – WIPP, US More isotope – ~5000 kg of ¹³⁶Xe 150 kg of 136 Xe – T_{1/2} > 3.5×10²⁵ y – m_{BB} < 93 – 286 meV Improvement in light sensors (LAAPDs \rightarrow SiPM) First observation of $2\nu\beta\beta$ of ¹³⁶Xe (2011) – T_{1/2} = 2.165×10²¹ y Increased light collection Improvement in radiopurity (electroformed Cu) Concept Cold electronics Single phase enriched LXe TPC LXe self EXO-200 **nEXO** Energy resolution $\Delta E(\sigma) \sim 0.8\%@Q_{BB} \rightarrow 1.9\%$ FWHM shielding Measurement of both charge and scintillation Fiducial Mass [kg] 74.7 3281 preCDR - arXiv:1805.11142v2 Single site (including signal) vs. multi site events (background) Energy resolution arXiv:2106.16243 1.2% 0.8% Multi-dimensional analysis using energy, 3D position and topology σ/Q_{BB} [%] Background dominated $1.35 \times 10^{28} \, {\rm vr}$ Xe [yr] Charge Tiles 10^{28} by Rn outgassing and **nEXO** Charge Tiles Support $0.74 \times 10^{28} \, \mathrm{vr}$ intrinsic radioactivity TPC SiPMs E. 10^{27} $0\nu\beta\beta$ Equivalent background **HFE 7000** SiPM Staves index: 7×10^{-5} c/keV kg y) of 10^{26} $5.0 \times 10^{25} \text{ vr}$ Half-life LXe Field Shaping Rings Median Sensitivity, 90% C.L. 10 y sensitivity Median Discovery Potential, 3σ Support Rods 10^{25} SiPMs EXO-200 Sensitivity, 90% C.L 1.35×10²⁸ v and Spacers 0.02.510.05.07.5 $m_{\beta\beta}$ < 5 - 15 meV Livetime [yr] Cathode ←130 cm→ Cryostat OV Tagging of individual ¹³⁶Ba daughter Vacuum Main components $^{136}Xe \rightarrow ^{136}Ba + 2e^{-}$ **Field Rings** Demonstrated by inside the TPC vessel Cryostat IV fluorescence in solid Xenon Nature 569, 203–207 (2019)

Cathode

Completed Data taking M. Sorel – NEUTRINO 2022

 10^{4}

Counts/bin 10²

10¹

 10^{0}

Completed Data taking Construction Advanced R&D R&D

Dual-phase Xe TPC experiments

Similar calculations from PANDAX-4T (3.7 t) and LZ (10 t) with sensitivities two orders of magnitude lower Ke Han, TAUP 2021 arXiv:2104.13374

Crystal embedded source Semiconductors

rommaso Comellato, Riccardo Brugnera, this afternoon – this conference				
$GERDA \to L$	EGEND		Construction / Commissioning Advanced R&D R&D	
$\begin{array}{c} \text{GERDA} \\ \text{MAJORANA dem.} \end{array} \rightarrow \text{LEGEND-200} \rightarrow \text{LEGEND-1000} \\ \end{array}$	AIP Confer LEGEND-200 combine	rence Proceedings 1894, 020027 s the best of GERDA ar	(2017) d MJD	
$\begin{array}{c} \mbox{GERDA} - LNGS, \mbox{Italy} \\ \mbox{35 kg of } ^{76}\mbox{Ge} \end{array} T_{1/2} > 1.8 \times 10^{26} \mbox{ y} - \mbox{m}_{\beta\beta} < 79 - 180 \mbox{ meV} \end{array}$	 Adopt GERDA detector Reuse GERDA infrast Follow MJD selection 	or configuration ructure at LNGS (after up of radiopure parts	grade)	
 Concept High purity naked Ge detectors immersed in instrumented LAr Energy resolution ΔE ~ 3 keV FWHM @Q_{ββ} Pulse shape discrimination: multi site vs. single site events Anticoincidence with LAr active shield, instrumented with Wavelength shifting fiber shroud coupled to SiPMs PMTs on top and bottom of the setup 	 MJD electronics and low threshold ⁷⁶Ge: 35 kg from GERDA, 30 kg from MJD 140 kg are new material New detector type, already tested in GERDA ICPC detector, > 2 kg vs. previous 0.7-0.9 kg → same energy resolution and PSD capability Commissioning: J. Gruszko - NEUTRINO 2 Detector deployment started in Sep 2021 An integrated commissioning run is ongoing 			
V P P P P P P P P P P P P P P P P P P P	LEGEND-1000S. Schoenert - NEUTRINO 2022Same technology, new larger infrastructureDiscordPhased approach, up to 1000 kg of 76 GeBackgrounSite to be decided - SNOLAB / LNGSfree approach			
	LEGEND-200	BI: 10 ⁻⁵ c/(keV kg v)		
Background index (BI) Energy (keV)	$T_{1/2} > 10^{27} v - 5 v live time$	$T_{1/2} > 1.3 \times 10^{28} - 10$ v live tir	ne 🚺	
37 HP Ge detectors $5.2^{+1.6}$ $_{-1.3} \times 10^{-4} \text{ c/(keV kg y)}_{\text{Lowest in arrigents}}$	$m_{BB} < 34 - 78 \text{ meV}$	$m_{\beta\beta} < 9 - 21 \text{ meV}$		
Phys. Rev. Lett. 125, 252502 (2020) experies		arXiv:2107.1146	<u>2v1</u> 28	

Crystal embedded source Bolometers

Beyond CUORE and CUPID: CROSS, BINGO

Completed Data taking Construction / Commissioning Advanced R&D R&D

Techniques for background rejection in future Li_2MoO_4 / TeO₂ based experiments

AMoRE

 $\textbf{AMORE-I} \rightarrow \textbf{AMORE-II}$

AMoRE – Y2L Lab (AMORE-I), Yemilab (AMORE-II), Korea

Concept

- ¹⁰⁰Mo-containing scintillating bolometers
- Initially chosen compound (AMoRE pilot R&D): ^{48depl}Ca¹⁰⁰MoO₄ \rightarrow high light yield, excellent α/β separation by PSD and light yield \rightarrow challenging internal contamination (²³⁸U chain)
- ^{48depl}Ca¹⁰⁰MoO₄ has been accompanied by Li₂¹⁰⁰MoO₄ in AMORE-I
- Li₂¹⁰⁰MoO₄ is currently the only compound foreseen in AMORE-II
- Heat readout based on **MMC sensors** (faster than CUORE/CUPID) $\rightarrow 2\nu\beta\beta$ random coincidences provide negligible background
- Energy resolution $\Delta E \sim 10-15 \text{ keV FWHM } @Q_{\beta\beta}$

Data taking Construction JINST 15 C08010 (2020) Advanced R&D J. Phys.: Conf. Ser. 1468, 012130 (2020) R&D AMORE-I – started in Aug 2020 - stop in 2022 13x ^{48depl}Ca¹⁰⁰MoO₄ (CMO, 4.6 kg) 5x Li₂¹⁰⁰MoO₄ (LMO, 1.6 kg) 3 kg of ¹⁰⁰Mo AMoRE-I preliminary Light/Heat [A.U.] LMO4 B/v and the states 5000 3000 4000 6000 Heat [keV] Target BI: < 10⁻² counts/(keV kg y) Projected sensitivity: 7×10^{24} y $m_{\beta\beta} < 130 - 250$ meV Yoomin Oh – NEUTRINO 2022 **AMORE-II** – 2022 - 2027 Secured **110 kg of {}^{100}Mo - 596x Li_2{}^{100}MoO_4 crystals** New cryostat and underground lab – work in progress Target BI: $< 10^{-4}$ counts/(keV kg y) Projected sensitivity: 8×10^{26} y $m_{\beta\beta} < 13 - 25$ meV

Completed

Double beta decay: status and prospects

Current generation (final sensitivity for recently concluded - running on- commissioning projects)

Next generation (projects to be started during the next decade)

BACK UP

Riccardo Brugnera, tomorrow afternoon – this conference

LEGEND

Completed Data taking Construction / Commissioning Advanced R&D

R&D

Other gas TPC experiments

Other semiconductor-based experiments

Completed Data taking Construction / Commissioning Advanced R&D R&D

Other bolometric efforts

CANDLES

CANDLES-III Pure scintillation experiment with CaF₂(Eu) crystals Natural crystals – 96x 3.2 kg \rightarrow only **350 g of** ⁴⁸Ca KAMIOKA

New phase of the experiment \rightarrow CANDLES-IV

- Study the possibility of enrichment with Laser Isotopic Separation
- Move to scintillating bolometers (as CUPID, AMORE)
 - high energy resolution
 - α/β rejection

Preliminary encouraging results with large crystals (MMC technology)

SuperNEMO

Tracker-Calorimeter Technique

- Foils can be made of any solid $\beta\beta$ isotope (SuperNEMO uses ⁸²Se)
- Identification of e^{-} , e^{+} , γ and $\alpha \rightarrow$ leads to excellent background rejection.
- Event topology reconstruction (energies, angles).
- *e*-γ separation can probe decays to excited states

SuperNEMO demonstrator status

Modane

- Final commissioning.
- First tracker-calorimeter data September 2021

Current role of SuperNEMO Providing Supporting Measurements

- Precision measurements of 2vββ
- g_A quenching constraints (NEMO-3 analysis in preparation)

Understanding the Ultimate Reach of the Tracker-Calorimeter Technique

- Can the technique be used to confirm & probe a signal found in the next generation of 0vββ experiments?
- Explore different detector technologies & isotopes

Neutrinoless double beta decay in a nutshell

- **Ovbbis:** $(A,Z) \rightarrow (A,Z+2) + 2e^{-2p}$ $2n \rightarrow 2p + 2e^{-2p}$ Creation of matter without antimatter partners **Beyond Standard Model Never observed – Best limits** $\tau > 10^{24} - 10^{26} y$ **1** Standard mechanism: neutrino physics $0v2\beta$ is mediated by light massive Majorana neutrinos (exactly those which oscillate) Sometimes defined "mass mechanism"
- ② Non-standard mechanisms: Sterile v, LNV Not necessarily neutrino physics
- The only currently viable experimental approach to probe the Majorana nature of neutrino

Francesco Vissani, this workshop

Neutrinoless double beta decay in a nutshell

- Ονββ: (A,Z) → (A,Z+2) + 2e⁻ 2n → 2p + 2e⁻
 Creation of matter without antimatter partners
 Beyond Standard Model
 Never observed - Best limits τ > 10²⁴ - 10²⁶ y
 Standard mechanism: neutrino physics 0v2β is mediated by light massive Majorana neutrinos (exactly those which oscillate) Sometimes defined "mass mechanism"
- ② Non-standard mechanisms: Sterile v, LNV Not necessarily neutrino physics
- The only currently viable experimental approach to probe the Majorana nature of neutrino

Francesco Vissani, this workshop

