Majorana neutrinos and rare decays: where we are

Giovanni Benato

Neutrino Oscillation Workshop - September 4-11, 2022

Work developed in collaboration with:

- M. Agostini, University College London
- J. Detwiler, University of Washington
- J. Menéndez, University of Barcelona
- F. Vissani, Laboratori Nazionali del Gran Sasso

A lot of content and plots from <u>arXiv:2202.01787</u>

Historical landscape

~1950	Geochemical and direct experiments
~1970	First searches with Ge(Li) and scintillators
~1990	HPGe, TPCs, tracking detectors
~2000	O(10) kg HPGe sensitivity; KK claim 😲
~2010	O(100) kg HPGe, TPCs, liquid scintillators
now	moving towards the ton-scale!

Which are the fundamental symmetries and conserved quantities?

- B, L_e , L_μ , L_τ and $L=L_e+L_\mu+L_\tau$ are accidental symmetries that emerge without being *a priori* required
- Actually, these are anomalous symmetries spoiled by the full quantum theory
- Exact *global* symmetries of the standard model:

 $L_e^-L_u^- \rightarrow Violation$ seen in appearance mode by T2K

- L_{μ} - $L_{\tau} \rightarrow$ Violation seen in appearance mode by OPERA
- $\textbf{B-L} \quad \rightarrow \text{ We don't know yet}$

What generated the matter-antimatter asymmetry in the Universe?

- Non-perturbative effect violate B+L, but can't explain *quantitatively* the asymmetry
 → We need a *dynamical* explanation yielding the asymmetry at some point in history: *baryogenesis*
- Possible solution: baryogenesis through *leptogenesis*
 - \rightarrow Observing the violation of B-L in the lepton sector would give a strong qualitative indication for the correctness of the baryogenesis hypothesis

From $0\nu\beta\beta$ decay to the neutrino mass

Why are neutrino masses so small? Maybe, are they Majorana masses?

• Connection between $0\nu\beta\beta$ decay rate and new physics terms:

$$\frac{\Gamma_{0\nu}}{\ln 2} = \frac{1}{T_{1/2}^{0\nu}} = \sum_{i} G_i g_i^4 M_i^2 f_i(\Lambda) + \text{interference terms},$$

• In the case of D=5 (light neutrino exchange):

$$\frac{1}{T_{1/2}^{0\nu}} = G_{01} g_A^2 \left(M_{light}^{0\nu} \right)^2 \frac{m_{\beta\beta}^2}{m_e^2}$$
$$m_{\beta\beta} = \left| \sum_{i=1}^3 |U_{ei}^2| e^{i\varphi_i} m_i \right|$$

From $0\nu\beta\beta$ decay to the neutrino mass

$$m_{\beta\beta} \equiv |m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\alpha_{21}} + m_3 s_{13}^2 e^{i(\alpha_{31} - \delta)}|$$

Majorana phases

$$m_{\beta\beta} \equiv |m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\alpha_{21}} + m_3 s_{13}^2 e^{i(\alpha_{31} - \delta)}|$$

"Traditional" approach

- Assume worst- and best-case scenario and merge them
- Compute allowed space, no probability distribution!

Frequentist approach

- Maximum likelihood analysis
- Compute allowed space also for Majorana phases

20 meV

 $\rho_{\text{true}} = 0^{\circ}$

 $\rho_{\rm true} = 90^{\circ}$

 $\rho_{\rm true} = 180^\circ$

360°

270°

90°

0

270° Q 180°

90°

270°

م 180° 90° 0

Q 180°

10 meV

5 10

Exposure ξ (ton·yr)

 $|M_{0y}| = 3$

Bayesian approach

- Assume priors on phases
- Compute probability distribution on all parameters
- Strong dependence on priors!

G. Benato, Neutrino Oscillation Workshop, 4-11 Sep. 2022

Interplay between $0\nu\beta\beta$ decay and cosmology

- Robust constraints on Σ from cosmological observations
 - → Single results are model dependent, but limit fairly independent from selected dataset/assumption
- Possibility to evaluate discovery probability for m_{ββ} with minimal assumptions

 0vββ decay triggered by BSM physics, but takes place in a highly correlated many-body system

 \rightarrow Nuclear model(s) required to connect experimental sensitivity/results on $0\nu\beta\beta$ decay rate to underlying BSM physics

- Connection to any BSM mechanism possible with just two approximations:
 - \circ Light: m_v << p ~ 200 MeV
 - Heavy: $m_v >> p \sim 200 \text{ MeV}$

Effective field theory

- BSM models defined at higher energy than electroweak scale (250 GeV), hadron scale (1 GeV) and nuclei (200 MeV)
 - \rightarrow EFT suitable to study and organize all $0\nu\beta\beta$ contributions
- Master formula for $0\nu\beta\beta$ decay rate:

$$T_{1/2}^{-1} = G_{01} g_A^4 \left(M_{\text{long}}^{0\nu} + M_{\text{short}}^{0\nu} \right)^2 \frac{m_{\beta\beta}^2}{m_e^2} + \frac{m_N^2}{m_e^2} \tilde{G} \tilde{g}^4 \tilde{M}^2 \left(\frac{v}{\tilde{\Lambda}} \right)^6 + \frac{m_N^4}{m_e^2 v^2} \tilde{G'} \tilde{g'}^4 \tilde{M'}^2 \left(\frac{v}{\tilde{\Lambda'}} \right)^{10} + \cdots$$

- \rightarrow Compute contribution due to *any* odd-dimensional operator
- \rightarrow Phase spaces well known (computed)
- \rightarrow NMEs computed by nuclear theory
- \rightarrow Can be used to place limits on new physics scale
- \rightarrow Short-range exchange of high-energy light neutrinos might not be negligible

Many-body methods

Name	Method	Performance	
Nuclear Shell Model	Mix nuclear 1- and 2-shell configurations within given space	Good nuclear spectroscopy from O to Pb; effective Hamiltonian tuned on each nucleus	
Quasiparticle Random-Phase Approximation	Large configuration spaces with several shells; few nuclear correlations	Overestimated NMEs for non-spherical nuclei \rightarrow fixed recently	
Interacting Boson Model	Models nucleus as set of bosons and map bosonic operators to nucleon DOF	No p-p correlations \rightarrow Overestimates NMEs	
Energy-Density Functional	Mean-field description + correlations	Very good spectroscopy; Expensive inclusion of correlation → Overestimates NMEs	

- Systematic trend: for all nuclei, NSM predicts the smallest NME, EDF the largest
- Factor ~3 difference between the methods
- Most predicted NME for single-β decay overpredicts the experiment
 - \rightarrow Caused by missing nuclear correlations or suboptimal transition operator
 - \rightarrow Same effect expected for $\beta\beta$ decay
 - \rightarrow Commonly fixed by **ad-hoc** *quenching of* g_A

Ab-initio methods

- Treat explicitly all nucleons in the nucleus interacting with realistic forces
 - \rightarrow Include nucleon-nucleon and three nucleon forces
 - \rightarrow Include 1-body operators and 2-body correlations
- NMEs similar or smaller than from NSM

Name	Method	Performance
Quantum MC	Time evolution of trial nuclear state (via Hamiltonian) towards lowest-energy configuration	Most accurate for A≲12 Exponential scaling vs A
No-Core Shell Model	Extension of NSM: lowest-energy nucleons treated explicitly + high-energy orbitals	Limited to A≲22 Exponential scaling vs A
In-Medium Similarity Renormalization Group	Based on unitary transformation that simplify the solution of the many-body problem + correlations to reference state	Polinomial scaling vs A
In-Medium Generator Coordinate Method	Combination of reference state + GCM to include correlations and proton-proton pairing	Polinomial scaling vs A; smaller M _{long} but enhanced M _{short}
Coupled-Cluster	Up to triple correlations to reference state	Polinomial scaling, limited to spherical nuclei near magic ones

- QMC and NCSM can reproduce experimental NMEs of single-β decay with few percent precision
- Reliable NME calculation for $0\nu\beta\beta$ decay not available yet \rightarrow Nuclear spectroscopy not matching data yet
- Seems to confirm that "the quenching of g_{A} is not a theory" (cit. F. Vissani)

G. Benato, Neutrino Oscillation Workshop, 4-11 Sep. 2022

Heavy neutrino exchange

- Better general agreement, except for QRPA
- Large uncertainty due to ignored short-range correlations

Experimental aspects: $0\nu\beta\beta$ decay signature

• $0\nu\beta\beta$ decay can be searched only with isotopes for which the regular β decay is forbidden

- $0\nu\beta\beta$ decay signature is an excess at the Q-value ($Q_{\beta\beta}$) in the sum electron spectrum
- 2vββ decay yields a continuum up to Q_{ββ}

Isotope selection

- High Q-value $(Q_{\beta\beta})$ is highly preferable:
 - Larger phase space
 - Lower background from natural radioactivity
- High isotopic abundance preferable \rightarrow Easier enrichment

Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	${f_{\mathrm{nat}}}^{\mathbf{b}}$	$f_{\rm enr}{}^{\rm c}$	$T_{1/2}^{2 uetaeta\mathrm{d}}$	$T_{1/2}^{0\nu\beta\beta e}$
		$[\mathrm{keV}]$	[%]	[%]	$[\mathbf{yr}]$	[yr]
^{48}Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16	$(6.4^{+0.7}_{-0.6}(\text{stat})^{+1.2}_{-0.9}(\text{syst})) \cdot 10^{19}$	$> 5.8 \cdot 10^{22}$
$^{76}\mathrm{Ge}$	76 Se	2039.061(7)	7.75(12)	92	$(1.926 \pm 94) \cdot 10^{21}$	$> 1.8 \cdot 10^{26}$
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3	$(8.60 \pm 0.03(\text{stat})^{+0.19}_{-0.13}(\text{syst})) \cdot 10^{19}$	$> 3.5 \cdot 10^{24}$
96 Zr	^{96}Mo	3356.097(86)	2.80(2)	86	$(2.35 \pm 0.14(\text{stat}) \pm 0.16(\text{syst})) \cdot 10^{19}$	$> 9.2 \cdot 10^{21}$
$^{100}\mathrm{Mo}$	100 Ru	3034.40(17)	9.744(65)	99.5	$(7.12^{+0.18}_{-0.14}(\text{stat}) \pm 0.10(\text{syst})) \cdot 10^{18}$	$> 1.5 \cdot 10^{24}$
$^{116}\mathrm{Cd}$	116 Sn	2813.50(13)	7.512(54)	82	$(2.63^{+0.11}_{-0.12}) \cdot 10^{19}$	$> 2.2 \cdot 10^{23}$
$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)	92	$(7.71^{+0.08}_{-0.06}(\text{stat})^{+0.12}_{0.15}(\text{syst})) \cdot 10^{20}$	$> 2.2 \cdot 10^{25}$
136 Xe	136 Ba	2457.83(37)	8.857(72)	90	$(2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{syst})) \cdot 10^{21}$	$> 1.1 \cdot 10^{26}$
$^{150}\mathrm{Nd}$	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91	$(9.34 \pm 0.22(\text{stat})^{+0.62}_{-0.60}(\text{syst})) \cdot 10^{18}$	$> 2.0 \cdot 10^{22}$

Detector type	Description	Typical isotope mass	Containment efficiency	Pros and cons
Solid state granular	Crystals containing ββ isotope	0.1-1 kg (single crystal)	70-95%	+ Scalable+ High resolution- Many crystals required
Monolithic liquid or gaseous	Material = isotope or isotope dissolved in liquid	100-1000 kg	100%	+ Single detector+ Self shielding- Poor resolution
Composite	Foil with isotope in low-pressure gas tracker	10 kg	~50%	+ Ultra-low background + Multiple isotopes - Very hard to scale

Readout channel	Energy resolution	Particle identification	Sensitivity to position	Applicable to multiple isotopes
Ionization	0.1-1%	Only in gas	Yes	Not really
Phonons	~0.2%	Nope	Nope	Yes
Scintillation	Few %	a vs β	In liquids and gases	Yes
Cherenkov	Forget it!	Visible only for β 's	Maybe	Yes

$0\nu\beta\beta$ decay experimental fauna

Germanium experiments

- Low Q-value: 2039 keV
- Highest energy resolution: ~0.1% FWHM
- **Discrimination of \beta\beta vs a vs \gamma + possibility of active \gamma veto**
 - \rightarrow Extremely low bkg: ~5·10⁻⁴ counts/keV/kg/yr reached by GERDA
 - \rightarrow Operating next to linear sensitivity regime
- MAJORANA and GERDA completed, joining for next-gen experiment LEGEND

\rightarrow GERDA talk by T. Comellato, LEGEND talk by R. Brugnera

Majorana demonstrator

Gas-Xe TPCs: NEXT

- High-pressure ~10 bar with double readout (ionization + scintillation)
- Energy resolution ~1% FWHM demonstrated
- Particle tracking
 - \rightarrow Discrimination of $\beta\beta$ from a and single- β or γ events
- 2vββ decay measured by NEXT-White using 3.5 kg of Xe only!
- NEXT-100 under construction @ Canfranc
 - \rightarrow Expected background 5·10⁻⁴ counts/keV/kg/yr
 - \rightarrow Expected resolution 0.5-0.7% FWHM

Liquid scintillator experiments

KamLAND-Zen

- Very large volume
 - \rightarrow Isotope in central part
 - \rightarrow Highly effective **self**

shielding

- Isotope (¹³⁰Te or ¹³⁶Xe) dissolved in liquid scintillator
 - $\rightarrow \text{Easily } \textbf{scalable}$
 - \rightarrow Enrichment not strictly required
- High intrinsic backgrounds
- Readout of scintillation only
 → Particle identification
 - possible
 - \rightarrow Energy resolution of few %

Good for limit setting, not for discovery

 \rightarrow KamLAND-Zen talk by K. Ichimura

SNO+

Liquid scintillator experiments: SNO+

- Repurposed SNO experiment with 0.5% Te-loaded scintillator
- Te-loading not as easy as Xe-loading
- Separate background and signal+background measurements
 - 2017-2019 as pure-water Cherenkov detector \rightarrow Characterization of detector response
 - 2019-now with unloaded LAB scintillator
 - \rightarrow Study scintillator response
 - \rightarrow Study scintillator-related backgrounds
 - Late 2022-20?? with Te-loaded scintillator
 - \rightarrow Looking forward to hear good news!

G. Benato, Neutrino Oscillation Workshop, 4-11 Sep. 2022

Cryogenic calorimeters

Tracking calorimeters: SuperNEMO

- Measure both energy and momentum
 - \rightarrow Background suppression
 - \rightarrow Single electrons resolved
 - \rightarrow Possible to study $0\nu\beta\beta$ decay mechanism
- Source ≠ detector
 - \rightarrow Limited isotope mass
 - \rightarrow Any isotope is usable
- Perfect technology for precision measurement of $0\nu\beta\beta$ and $2\nu\beta\beta$ decay
- SuperNEMO demonstrator under commissioning

THANK YOU!