

www.kit.edu

assessing the neutrino mass scale: an overview

three complementary approaches: laboratory-based & cosmology

assessing the neutrino mass scale: an overview

three complementary approaches: laboratory-based & cosmology

large-scale structures

- CMB, galaxy surveys,...
- model-dependent (H_0)

Massimíliano Lattanzi

Cosmology and Neutríno Propertíes

EC ON HOLMIUM-163: ECHo, HOLMES

v-mass from electron capture

EC-process of ¹⁶³Ho : ¹⁶³Ho + $e^- \rightarrow v_e + {}^{163}Dy^*$ (no K, L shell capture due to Q_{EC})

 $t_{1/2} = 4570 a$ $Q_{EC} = 2.8 \ keV$ full de-excitation spectrum **N1** 10² spectrum close to Q_{FC} (eV⁻¹) 14 1/λ dλ/dE_c (keV⁻¹) 12 M1 10 N2 d\/dE_c 10 M2 $m(v_e) = 0 eV$ finite hole τ : 8 **Breit-Wigner** .12 resonance (Γ_i) 10-1 10-12 $m(v_e) = 0.5 eV$ 2 10⁻² -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 10-3 $T_c - Q_{FC}$ (eV) 0.5 1.5 2 2.5 0 T_c (keV)

v-mass from EC: calorimetric approach

Quantum sensors (MMC, TES) to measure atomic de-excitation of ¹⁶³Dy*

v-mass from EC: calorimetric approach Quantum sensors (MMC, TES) to measure atomic de-excitation of ¹⁶³Dy* Metallic Magnetic Calorimeter Transition Edge Sensor TES Μ absorber δT in absorber after SQUID **EC**-process thermal thermal link link thermal bath thermal bath

 \Rightarrow change in **magnetism** δ **M** of param. sensor

 \Rightarrow change in temp. δ T of TES thermistor

signal:
$$\delta \Phi_s \sim \frac{\partial M}{\partial T} \cdot \Delta T \sim \frac{\partial M}{\partial T} \cdot \frac{1}{C_{tot}} \cdot \delta E$$

signal:
$$\Delta T = \frac{\delta E}{V \cdot C_V}$$

v-mass from EC: calorimetric approach

Quantum sensors: large arrays with read-out via muliplexing

- enclosing ¹⁶³Ho source via ion implantation Mainz university / Genoa university
- 60 MMC pixels with ~ 1 Bq of ¹⁶³Ho (2020)
 >10⁸ EC events, achievable sensitivity:

 $m(v_e) < 20 \text{ eV} (95\% \text{ CL})$

v-mass from EC: calorimetric approach

ongoing R&D: multiplexing & reliable operation of arrays (10³...10⁴ pixels)

- ECHo & HOLMES:

moving forward to reach sensitivity at eV-scale

5 mm

 theoretical description of ¹⁶³Ho shape & Q_{EC}: further work required

-100 k: 12000 pixels each 10 Bq m(v_e) < 2eV

ECHO

LMES

Elena Ferrí

Status of HOLMES

ß-DECAY OF TRITIUM: KATRIN, PROJECT8

Tritium ß-decay: kinematics and v-mass

Fermi's Golden rule: kinematic parameters & energy conservation

Tritium ß-decay: kinematics and v-mass

Fermi's Golden rule: kinematic parameters & energy conservation

Project 8: a new spectroscopic approach

CRES: Cyclotron Radiation Emission Spectroscopy

- trapped electrons from tritium ß-decay in homogeneous, strong B-field
- precise measurement of frequency ω yields electron kinetic energy $E_{e,kin}$

Project 8: proof-of-principle

CRES: first detection of cyclotron radiation from a single keV-scale electron

Project 8: a first spectrum & v-mass limit

Phase-II result: 3 months of data taking – 3770 events observed

- a 1 mm³ volume yields the first CRES endpoint measurement: no bg-events!

Project 8: near & long-term future

towards a large volume demonstrator & an atomic tritium source

KATRIN Collaboration

international team of ~ 150 members from 8 countries

Karlsruhe Institute of Technology

Max-Planck-Institut für Physik

KATRIN experiment: overview

a 70 m long set-up: a gaseous tritium source & high resolution MAC-E filter

KATRIN experiment: tritium loops by TLK

a dedicated laboratory to handle large tritium inventory & throughputs

challenges: ultra-high vacuum, HV stabilisation, background, and...

challenges: ultra-high vacuum, HV stabilisation, background, and transport

challenges: ultra-high vacuum, HV stabilisation, background, and transport

Challenges: ultra-high vacuum, HV stabilisation, background, and transport Low Water Levels Disrupt European River Cruises

no KATRIN tour around Europe in 2022

a high resolution MAC-E filter & neutrino vessel

KATRIN data taking: 2018

Science runs from first day after inauguration on June 11, 2018

KATRIN data taking: 2018

Scientific results from first day after inauguration: searching for sterile v's

FT run = first tritium (0.5% of nominal column density)

KATRIN data taking: 2018ff...

many more data taken in specific campaigns KNM1...KNM2...

KATRIN – measurement principle & strategy

measurement: integrated rate above spectrometer retarding potential U₀

- calendar year:

several measurement campaigns (KNMx), typically 4-5

- campaign:

several (up to 8) weeks hundreds of ß-scans (up-down mode)

- **ß-scan**:

typical scan time: 2 h 30 HV set points with specific holding time & U_0 distribution interval [E_0 - 40 eV, E_0 + 130 eV]

KATRIN data taking: overview 2019 – 2021

number of electrons in ROI of detector: the first 6 campaigns

KATRIN data taking: first campaign KNM1

2019: initial 34 days of ß-scanning (spring)

KATRIN data taking: first 2 campaigns KNM1+2

2019: initial 91 days of ß-scanning (spring & autumn)

KATRIN data taking: first 2 campaigns KNM1+2

2019 improvements – better S/B ratio

KNM1 vs. KNM2: improved S/B ratio

analysis in 40 eV wide energy below E₀ (+ bg)

- increased signal strength
- reduced background level
- better overall statistics (error bars × 50)
- comparison of data points to best-fit model
- ring-wise (FPD) analysis

KNM1 & KNM2: scan procedures

KNM1 and KNM2 – different scan strategies due to different *S*/*B* ratio

KNM1 & KNM2: v-mass results

Results of individual campaigns: dominated by statistics!

- no indication for non-zero neutrino mass

combined result KNM1 & KNM2: m(v) < 0.8 eV (90%)C.L.

- only 7% of expected final data-set

KATRIN – 2022 result

distribution of fitted m_{ν}^2 and E_0 values

- best-fit value for v-mass-parameter:

 $E_0 = (18,573.69 \pm 0.03) eV$

KATRIN – 2022 result and earlier values

distribution of fitted m_{ν}^2 and E_0 values

- best-fit value for v-mass-parameter:

 $m_{\nu}^2 = (0.26 \pm 0.34) \ eV^2$

 $E_0 = (18,573.69 \pm 0.03) \, eV$

combined result KNM1 & KNM2:

 $m(\nu) < 0.8 \, eV \, (90\%)C.L.$

- only 7% of expected final data-set

KATRIN – uncertainty breakdown

dominated by statistical uncertainty

Search for violation of Lorentz invariance

- rotation of Earth: relative direction of WGTS acceptance angle changes w.r.t Lorentz-violating vector a^{μ}
- LV-signature: endpoint energy E₀
 oscillates with sidereal time
 (23 h 56 min 4s)
 aribitrary amplitude (phase)
 - ⇒ aribitrary amplitude / phase
- sensitive to LV-parameter

analysis of data from first campaign (KNM1) – fit of endpoints E_0

- use 2 h binning for fit of E_0
- no significant oscillation of E_0 observed
- conversion following

https://arxiv.org/pdf/2112.13803.pdf

$$\left| \left(a_{of}^{(3)} \right)_{11} \right| < 3.7 \cdot 10^{-6} \, GeV(90\% CL)$$

- for more details see

https://arxiv.org/abs/2207.06326

Search for local relic neutrino overdensities via $v_e + {}^{3}H \rightarrow {}^{3}He^+ + e^-$

- capture on ß-unstable nuclei: no threshold
- differential spectrum: peak above E_0
- consider effects:
 - integral scan, finite energy resolution
 - molecular smearing, source potential
- 100 g of tritium: 10 CvB captures/year
 but: only few 10 µg in KATRIN source!
- constrain local CvB overdensities

Search for local relic neutrino overdensities via $v_e + {}^{3}H \rightarrow {}^{3}He^+ + e^-$

- no CvB signal in first two campaigns
- improved (factor ~ 10²) constraints on local CvB overdensity η
- KATRIN++

R&D twoards novel source & read-out technologies

Thierry Lasserre KATRIN constraints on local relic neutrino background

search for light eV-sterile neutrinos: principle

signature: a characteristic 'kink' in the energy spectrum of electrons

KSN1 & KSN2: statistics dominated, combined best fit (1.2 σ) no evidence

- scenario I 10^{3} $m_{1,2,3} \ll m_4 \ (m_
u^2 = 0 \ {
m eV}^2)$ 10^{2} m_{4}^{2} (eV²) m_{4}^{2} (eV²) - scenario II m_{ν}^2 free **KNM1** m_{ν}^2 unconstrained $m_{\nu}^2 = 0 \text{ eV}^2$ KNM1 nuisance parameter **---**KNM2 KNM2 10^{0} KNM1+2 — KNM1+2 best fits yield no significant improvments (0.8 σ , 1.4 σ) over 10^{-2} 10^{-1} no-sterile hypothesis $|U_{\mathcal{A}}|^2$

search for sterile neutrinos: future prospects

$$-\Delta m_{41}^2 = m_4^2 - m_1^2 \approx \Delta m_{42}^2 \approx \Delta m_{43}^2$$
$$-\sin^2 2\theta = 4 \cdot |U_{e4}|^2 \cdot (1 - |U_{e4}|^2)$$

KATRIN:

 m_{eta} and m_4

 $\Delta m_{41}^2 \cong m_4^2 - m_\beta^2$ $sin^2 2\theta = 4 \cdot sin^2 \theta$ $\cdot (1 - sin^2 \theta)$

 $\Delta m_{41}^2 (eV^2)$ —— RAA 95% C.L. BEST + GA 95.45% CL - Neutrino-4 2σ KATRIN (KSN1) 95% C.L. KATRIN (KSN2) 95% C.L. ---- KATRIN (KSN1+2) 95% C.L. ····· KATRIN projected final sensitivity 95% C.L. **STEREO 95% C.L.**

KATRIN: FUTURE

KATRIN: improving v-mass sensitivity

goal: further reduction of current bg-rate (~140 mcps) by factor ~ 10

Signal/background discrimination via TEF

Transversal Energy Filter (TEF) to exploit different pitch angles

- forward peaked background vs. isotropic ß-decay signal

Background: study via passive TEF (pTEF)

Step 1: validity of background model (Rydberg & autoionizing states)

Background: suppression via active TEF (aTEF)

- Step 2: microstructured detectors to suppress background
- University Münster:
 silicon-semiconductor –
 deep-teching process
 ⇒ Si-aTEF

KIT / University of Heidelberg:
 3D-printed scintillator with SPAD-readout
 ⇒ scint-aTEF

$v_{st}(\sim sin^2\theta)$ 20 mass m_s 0 15 5 10 electron energy (keV)

solve the key observational shortcomings of the Standard Model, explain

Alexey Boyarsky and Mikhail Shaposhnikov, with some models placing the new particles in reach of current and proposed experiments.

Extending the elementary-particle inventory with heavy neutral leptons could

TURNING THE SCREW ON

RIGHT-HANDED NEUTRINOS

Institute of Experimental Particle Physics

extending the measuring interval to the entire 18.6 keV phase space of T_2

KATRIN future: search for keV-steriles

- scans with high rates (up to 10⁸ cps)

KATRIN future: search for keV-steriles

- Silicon Drift Detectors: from a single pixel to a large monolithic SDD-array
 - excellent energy resolution
 - fast signals, able to handle huge rate of ß-decay electrons

KATRIN sensitivity & other bounds

KATRIN will advance experimental sensitivity by many orders

long-term future: from KATRIN to KATRIN++

R&D on novel source & read-out technologies

Direct neutrino mass searches – conclusion

v-mass scale, BSM physics, eV/keV-steriles, relic v's,...

THANK YOU!