OSCILLATION PHYSICS WITH KM3Net/ORCA

Chiara Lastoria on behalf of the KM3NeT Collaboration Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille Neutrino Oscillation Workshop 2022 Ostuni (Italy) - September 6th, 2022

Aix*Marseille université

• Introduction: atmospheric neutrinos in a nutshell

- The KM3NeT experiment: detection principle, technology, and detector geometry
- Neutrino oscillation in KM3NeT/ORCA O sensitivity to main physics studies O other "low-energy" physics searches O current analyses and first results
- Summary and outlook

Introduction: atmospheric neutrino flux

• Secondary particles produced from the interaction of Cosmic Rays (CR) with the earth's atmosphere: O energy range spanning between few GeV up to TeV $O \nu_{\mu}/\nu_{e} \sim 2$ at around 1 GeV, otherwise $\nu_{\mu}/\nu_{e} > 2$

Introduction: atmospheric neutrino oscillation measurement

• Measurement of the **atm. neutrino flux** as a function of the **zenith angle** and **energy** O baseline ~ cosine zenith angle of the incoming neutrino

O very wide baseline range, from 10-30 km up to 13000 km (up-going events crossing the earth)

Introduction: atmospheric neutrino oscillation measurement

- ν_{μ} disappearance is the dominant effect:
 - O measurement of **neutrino oscillation parameters**, θ_{23} and Δm_{32}^2
- ν_e appearance, sub-dominant effect:
 - O sensitive to the Neutrino Mass Ordering (NMO), resonance oscillation in the earth due to matter effect

KM3NeT: detection principle

• KM3NeT, Cubic Kilometre Neutrino Telescope: Water Cherenkov neutrino telescope in the deep Mediterranean Sea

KM3NeT: detection principle

• KM3NeT, Cubic Kilometre Neutrino Telescope: Water Cherenkov neutrino telescope in the deep Mediterranean Sea O large detection volume which allows for huge statistics O large array of photosensors for detecting the Cherenkov radiation from secondary particles

KM3NeT: technology

• Same modular structure adaptable for different physics purposes: O high time precision (~ns) O good spatial resolution (~10 cm)

06.09.2022 - NOW 2022 - C. Lastoria

Eur. Phys. J. C 80, 99 (2020)

J. Phys. G: Nucl. Part. Phys. 43 084001 (2016)

KM3NeT: detector geometry

- Two detection sites (ARCA in Italy, and ORCA in France) with a wide physics program: from GeV to PeV
 - O ARCA, Astroparticle Research with Cosmics in the Abyss

- 3560 m depth (~100 km off-shore Capo Passero, in Sicily)
- 2 BB (230 DUs, 128340 PMTs)
- Detector configuration optimised for neutrino astronomy in the [I TeV, IO PeV] energy range • so far, 19/230 lines installed (~8% of nominal vol.)

KM3NeT: detector geometry

• Two detection sites (ARCA in Italy, and ORCA in France) with a wide physics program: from GeV to PeV

O ARCA, Astroparticle Research with Cosmics in the Abyss

ORCA, Oscillation Research with Cosmics in the Abyss

06.09.2022 - NOW 2022 - C. Lastoria

- 2450 m depth
 - (~40 km off-shore Toulon, in Provence)
- 1 BB (115 DUs, 64170 PMTs)
- Detector configuration optimised for neutrino

oscillation physics in the [I GeV, IOO GeV] energy range

• so far, 11/115 lines installed (~10% of nominal vol.)

KM3NeT/ORCA: neutrino topologies

- Depending on the neutrino flavor and interaction, two event topologies can be detected: O track-like events, very elongated and easier to be reconstructed O shower-like events, more spherical
- At very low energy, the two topologies are more difficult to be distinguished

KM3NeT/ORCA: events reconstruction

- Event reconstruction:
 - O maximum likelihood algorithms optimized for
 - the two topologies
 - direction, energy, time in each PMT, and position of the interaction vertex

KM3NeT/ORCA: events reconstruction

- Event reconstruction:
 - O maximum likelihood algorithms optimized for
 - the two topologies
 - direction, energy, time in each PMT, and position of the interaction vertex

- Event (pre-)**selection**:
 - Oup-going events (rejection of atm. muons)
 - O containment of the interaction vertex
 - O noise rejection

• Main sources of **backgrounds**: O down-going **atmospheric muons** O optical noise (⁴⁰K decays, PMT dark counts, bioluminescence)

KM3NeT/ORCA: neutrinos classification

• Event classification:

O multivariate analyses and Neural Network techniques (RDF, BDT, GNN, and other NN methods)

06.09.2022 - NOW 2022 - C. Lastoria

Lucia

98 96 94 90 all neutrinos v_{μ} + \overline{v}_{μ} CC, 5 GeV 86 $v_{\mu} + \overline{v}_{\mu}$ CC, 15 GeV 84 $v_{e} + \overline{v}_{e} CC, 5 GeV$ 82 $v_e + \overline{v}_e CC$, 15 GeV KM3NeT 80 8 10 atmospheric muon background contamination [%] fraction $-\nu_e CC$ $-\overline{\nu}_e CC$ 0.9 shower class 0.7 intermediate class 0.6 track class 0.5 KM3NeT 0.4 0.3 0.2 0 30 40 50 5 6 7 8 9 1 0 20 neutrino energy [GeV]

neutrino efficiency [%]

quickly reached a high neutrino classification efficiency (> 95%) with very low atm. muons contamination $(\sim 4\%)!$

Based on the track score, the final neutrino sample is classified into three classes:

- track class
- shower class
- intermediate class

used as inputs for the neutrino oscillation fit

- Fit methodology:
 - 2D binned log-likelihood maximization energy and cosine zenith distributions for the three classes

• Main Systematics:

O neutrino flux (spectral index, relative n. of $\nu_{e,\mu}$ and anti- $\nu_{e,\mu}$, their direction) \bigcirc cross-section (n. of NC and ν_{τ} and anti- ν_{τ} CC events) Odetector response (PMT efficiency, light yield in the hadronic showers, n. of events in the three classes)

Ling

O Asimov dataset to derive the median sensitivity to either the oscillation parameters or mass ordering

• Neutrino Mass Ordering (NMO):

O Asimov approach, with Inverted Ordering (IO) as the *alternate hypothesis* to the Normal Ordering

NMO sensitivity vs true θ_{23} value, after 3 years of data taking

06.09.2022 - NOW 2022 - C. Lastoria

Ling

16

- Neutrino Mass Ordering (NMO), combined analysis with JUNO:

 - $O 5\sigma$ measurement of NMO within 6 years!
 - reachable within 2 years in the favorable scenario of NO and θ_{23} in the positive octant!!

O advantage: tension in the Δm_{31}^2 best fits from both experiments when assuming the wrong hypothesis

- Contraction

- Neutrino oscillation parameters: θ_{23} and Δm^2_{32}
 - O Normal Ordering (NO) hypothesis on the left and Inverted Ordering (IO) hypothesis on the right

Expected KM3NeT/ORCA precision after 3 years of data taking at 90% of C.L.

18

KM3NeT/ORCA: sensitivity to other low-energy searches

- ν_{τ} appearance search as independent test for new physics:
 - O a good **reconstruction of shower-like** events is **crucial**!
 - O measured from the ν_{τ} normalization factor, n. of (anti-) ν_{τ} events in the NO hyp.
 - O Asimov approach:
 - null hyp if ν_{τ} norm = 1
 - 2 options for *alt. hyp*: (anti-) ν_{τ} CC varying and NC fixed to 1, or (anti-) ν_{τ} CC+NC scale free in the fit
- and other studies: sterile neutrino, neutrino earth tomography, low-energy astrophysics, etc. ...

Luis and the second

Eur. Phys. J. C (2022) 82:26

KM3NeT/ORCA: current detector geometry

• KM3NeT allows for physics studies since the commissioning phase: O stable data taking, efficiency: from 91%, in 2019, to 98%, in 2022 O efficient trigger algorithms (based on PMT and DOMs coincidences) O good event rate stability (~3% fluctuations)

06.09.2022 - NOW 2022 - C. Lastoria

+ 50% dataset, until June '22, improved analyses are ongoing!

ORCA II

4 new lines in June & currently, a sea operation is ongoing! ..expected +4 DUs!

KM3NeT Coll. at ICHEP 2022

KM3NeT/ORCA 6: detector performance

• KM3NeT allows for physics studies since the commissioning phase: ODU calibration (before and after the installation) allows for precise alignment measurement O detector resolution in track reconstruction < I degree</p>

06.09.2022 - NOW 2022 - C. Lastoria

KM3NeT Coll. at Neutrino 2022

KM3NeT/ORCA 6: current selection

- first KM3NeT/ORCA 6 neutrino oscillation analysis included only the track class
 - O atmospheric muons as the main rejected bkg
 - O neutrino selection includes only:
 - up-going events
 - well-reconstructed tracks (from max. likelihood reco variables)
 - containment in ~1.5 Mton instr.
 mass (start point in r=60 m)

KM3NeT/ORCA 6: current analysis

- first KM3NeT/ORCA 6 neutrino oscillation analysis included only the track class
 - O max. binned-likelihood in 2D energy and cosine zenith distributions
 - ONuFit 5.0, assuming NO, as the null hypothesis
 - O improved source of **systematics** compared to full ORCA sensitivity studies:
 - atm. neutrino flux
 - cross-section
 - overall normalization
 - detector response

KM3NeT/ORCA 6: current analysis

• first KM3NeT/ORCA 6 neutrino oscillation analysis included only the track class O max. binned-likelihood in 2D energy and cosine zenith distributions • NuFit 5.0, assuming NO, as the null hypothesis O already in the game with the other experiments (...only track class, 6 DUs, and ~1 year of collected data!!)

Lucia

KM3NeT/ORCA 6: current analysis & ongoing improvements

- first KM3NeT/ORCA 6 neutrino oscillation analysis included only the track class O max. binned-likelihood in 2D energy and cosine zenith distributions • NuFit 5.0, assuming NO, as the null hypothesis O already in the game with the other experiments (...only track class, 6 DUs, and ~1 year of collected data!!)
- Short-term improvements for the final ORCA 6 analysis: O increased data set (539 days of collected data) O track-vs-shower classification (BDT, GNN, others) O reconstruction and selection of shower-like events O inclusion of shower class in the fit procedure O improved study on systematics

KM3NeT/ORCA 6: ongoing improvements

- first KM3NeT/ORCA 6 neutrino oscillation analysis included only the track class
 max. binned-likelihood in 2D energy and cosine zenith distributions
 NuFit 5.0 assuming NO as the null hypothesis
 already competitive with other experiments (..only track
 class, 6 DUs, and ~1 year of collected data!!)
- Short-term improvements for the final ORCA 6 analysis:
 - Oincreased data set (539 days of collected data)
 - O track-vs-shower classification (BDT, GNN, others)

O reconstruction and selection of shower-like events

- O inclusion of shower class in the fit procedure
- O improved study on systematics

Summary and outlook

- KM3NeT/ORCA 6 data ready for neutrino oscillation physics!
 - O only 9% of instrumented volume, only I year of data, only track class included
 - \bigcirc clear oscillation pattern favoured at 5.9 σ
 - \bigcirc first measurement of θ_{23} and Δm_{32}^2 parameters
- A new KM3NeT/ORCA 6 mass production is underway:
- improving statistics (+50% of the current dataset) and detector size (soon ORCA13!)
- inclusion of track-vs-shower classification (BDT, GNN, other techniques)
- shower-like events reconstruction, selection, and inclusion in the fit
- improvement of the fit procedure (event classes and systematics)
- ν_{τ} appearance studies started

06.09.2022 - NOW 2022 - C. Lastoria

• KM3NeT/ORCA will contribute to the NMO measurement (3σ after 5 years) and neutrino oscillation parameters

...thanks for your attention!

KM3NeT/ORCA: neutrinos classification

• Event classification:

O multivariate and neural network topology algorithms (RDF, BDT, GNN, and other NN techniques)

06.09.2022 - NOW 2022 - C. Lastoria

Luci

KM3NeT/ORCA: neutrinos classification

• Event classification:

O multivariate and neural network topology algorithms (RDF, BDT, GNN, and other NN techniques)

06.09.2022 - NOW 2022 - C. Lastoria

Lucia

Based on the track score, the final neutrino sample is classified into three classes:

- track class
- shower class
- intermediate class

The three classes are the inputs for the neutrino oscillation fit

• Fit methodology:

O 2D binned log-likelihood maximization energy and cosine zenith distributions for the three classes O Asimov approach:

$$LL_0 = \sum_{i \in [E_{rec}, \cos\theta_{rec}]} LL_{0,i} = \sum_{i \in [E_{rec}, \cos\theta_{rec}]} - 2.0 (n_i^{null}, n_i^{alt} - n_i^{null} ln \frac{n_i^{null}}{n_i^{alt}})$$

• null hypothesis = MC pseudo-data using NuFit parameters • alternate hypothesis = unblinded data • *i*th, each bin in energy and cosine zenith

• Main Systematics:

O neutrino flux (spectral index, relative n. of $\nu_{e,\mu}$ and anti- $\nu_{e,\mu}$, their direction)

 \bigcirc cross-section (n. of NC and ν_{τ} and anti- ν_{τ} CC events)

O detector response (PMT efficiency, light yield in the hadronic showers, n. of events in the three classes)

Line

KM3NeT/ORCA: main systematics

Systematics for sensitivity studies

	Parameter	Null hypothesis	Dataset Value	Value at Min.	Prior
	$\Delta m^2_{32} \; [\mathrm{eV^2}]$	NO IO	$2.528 \cdot 10^{-3}$ $2.436 \cdot 10^{-3}$	$\begin{array}{c} (2.51^{+0.11}_{-0.11}) \times 10^{-3} \\ (2.43^{+0.10}_{-0.08}) \times 10^{-3} \end{array}$	free
	$\Delta m^2_{21} \ [\mathrm{eV^2}]$	NO IO	$7.39\cdot 10^{-5}$	$7.39\cdot 10^{-5}$	fixed
	$\delta_{ m CP}$ [°]	NO IO	$\begin{array}{c} 221.0\\ 282.0 \end{array}$	$\begin{array}{c} 162\pm180\\ 190\pm180\end{array}$	free
	$ heta_{13}$ [°]	NO IO	$\begin{array}{c} 8.60\\ 8.64\end{array}$	$8.63 \pm 0.40 \\ 8.62 \pm 0.29$	0.13
	$ heta_{12}$ [°]	NO IO	33.82	33.82	fixed
	$ heta_{23}$ [°]	NO IO	48.6 48.8	$49.4^{+2.3}_{-3.9}\\41.5^{+3.8}_{-1.9}$	free
	Spectral index	NO IO	1.0	$1.00 \pm 0.02 \\ 1.01 \pm 0.02$	free
	$n_{ u p}^{n}/n_{ u horiz}^{n}$	NO IO	1.0	$1.01 \pm 0.01 \\ 1.00 \pm 0.01$	0.02
	$n_{ec{ u}_e}$ / $n_{ec{ u}_\mu}$	NO IO	1.0	$\begin{array}{c} 1.02 \pm 0.06 \\ 1.00 \substack{+0.05 \\ -0.04} \end{array}$	0.02
	$n_{{ u}_{ m e}}/n_{{ar u}_e}$	NO IO	1.0	$\begin{array}{r} & & & \\ 1.02^{+0.22}_{-0.21} \\ & 1.00 \pm 0.16 \end{array}$	0.07
	$n_{ u_{\mu}}/n_{ar{ u}_{\mu}}$	NO IO	1.0	$0.98\substack{+0.15\\-0.14}\\1.00\substack{+0.12\\-0.11}$	0.05
	Energy scale	NO IO	1.0	$1.02 \pm 0.05 \\ 0.99 \pm 0.04$	0.06
	Had. energy scale	NO IO	1.0	$\begin{array}{c} 0.96\substack{+0.13\\-0.10}\\ 1.00\substack{+0.11\\-0.08}\end{array}$	0.05
	n_{NC}	NO IO	1.0	${\begin{array}{c}{1.02}\substack{+0.42\\-0.37\\0.89}\substack{+0.32\\-0.28\end{array}}$	free
	$n_{ au}^{CC}$	NO IO	1.0	${}^{+0.19}_{-0.20}_{1.03}{}^{+0.13}_{-0.14}_{-0.14}$	free
	$n_{Intermediate}$	NO IO	1.0	$\frac{1.00^{+0.05}_{-0.06}}{1.02\pm0.04}$	free
	n_{Tracks}	NO IO	1.0	$0.98 \pm 0.04 \\ 1.00 \pm 0.03$	free
	$n_{Showers}$	NO IO	1.0	$1.01\substack{+0.09\\-0.08}\\1.03\substack{+0.07\\-0.06}$	free

neutrino flux

X-Sec

06.09.2022 - NOW 2022 - C. Lastoria

ctor response

dete

Systematics for the current oscillation analysis

Linste

Туре	Parameter	Treatment
Oscillations	$\Delta m_{31}^2 [10^{-3} \text{ eV}^2]$	Free
Oscillations	θ_{23} [deg]	Free
Model	Normalisation	Free
Flux shape	Spectral index	N(0,0.3)
	$n_{\nu_{\rm up}}/n_{\nu_{\rm down}}$	N(0,0.07)
	$n_{\nu_{\mu}}/n_{\bar{\nu}_{\mu}}$	N(0,0.1)
Flux composition	$n_{\nu_e}/n_{\bar{\nu}_e}$	$\mathcal{N}(0,0.1)$
	$n_{\nu_{\mu}}/n_{\nu_{e}}$	N(0,0.03)
Cross section	n^{NC}	$\mathcal{N}(1,0.1)$
	n_{τ}^{CC}	N(1,0.2)
Detector	Energy scale	$\mathcal{N}(0, 0.1)$ detector r

• Neutrino Mass Ordering (NMO):

O Asimov approach, with Inverted Ordering (IO) as the alternate hypothesis

> NMO sensitivity vs true θ_{23} value, after 3 years of data taking

sensitivity [σ] OWN

 3σ sensitivity to IO,

after 5 years of data taking

06.09.2022 - NOW 2022 - C. Lastoria

Lucation

• Neutrino Mass Ordering (NMO), combined analysis with JUNO:

06.09.2022 - NOW 2022 - C. Lastoria

O advantage: tension in the Δm_{31}^2 best fits from both experiments when assuming the wrong hypothesis

Ling

