Oscillation physics with Hyper-Kamiokande

Zhenxiong Xie

On behalf of Hyper-Kamiokande collaboration

zhenxiong.xie@kcl.ac.uk

Outline

- Hyper-Kamiokande (HK)
 - HK Detector
 - Collaboration
 - Upgrade
 - Physics
- HK Long-Baseline Program
 - Sensitivity to CP Violation
 - Precision Measurements
- Proton Decay, Supernova Neutrinos

Akimoto, Yuki @ higgstan

Hyper-Kamiokande

- Next-generation neutrino experiment
- 8 times fiducial volume of Super-Kamiokande (SK) water Cherenkov detector
- Aim to start taking data from 2027

 * SK talk at 10:50 on 5th Sept - Yasuo Takeuchi T2K talk at 9:50 on 5th Sept - Lukas Berns

HK Collaboration

~520 members from 20 countries and ~100 institutes

Cavern Excavation

Overview of the HK construction

Access tunnel excavation has been finished as scheduled Approach tunnel and circular tunnel excavation is ongoing

Far detector

Far detector

Outer Detector (OD)

Reject cosmic ray muons to constrain the external background (3-inch PMTs + WLS plates)

Far detector

Outer Detector (OD)

Reject cosmic ray muons to constrain the external background (3-inch PMTs + WLS plates)

• Inner Detector (ID)

Cherenkov light from neutrino interaction (20-inch PMTs + mPMTs)

Photo-sensors

Zhenxiong Xie

King's College London

zhenxiong.xie@kcl.ac.uk

Far detector

Outer Detector (OD)

Reject cosmic ray muons to constrain the external background (3-inch PMTs + WLS plates)

• Inner Detector (ID)

Cherenkov light from neutrino interaction (20-inch PMTs + mPMTs)

Photo-sensors

Beam neutrinos J-PARC

Zhenxiong Xie King's College London zhenxiong.xie@kcl.ac.uk

Far detector

Outer Detector

(Photo Sensor (Tyvek Sheet) Inner Detec

(Photo Sense (Mylar Shee

Outer Detector (OD)

Reject cosmic ray muons to constrain the external background (3-inch PMTs + WLS plates)

- Inner Detector (ID)

Cherenkov light from neutrino interaction (20-inch PMTs + mPMTs)

Photo-sensors

 Near detectors

 IWCD
 ND280

 INGRID

 INDERIMAN

 INDERIMAN

Zhenxiong Xie

King's College London

zhenxiong.xie@kcl.ac.uk

Inner Detector (ID)

20,000 50 cm Box and Line Dynode **ID PMTs**

- 2.6 ns timing resolution
 - 2 times SK PMT efficiency

Additional mPMTs:

19 8 cm PMTs + electronics inside single pressure vessel

- Directional information of arrival photons
- Accurate photon counting
- Excellent timing resolution

Outer Detector (OD)

8,000 8 cm PMTs + WLS plates

Inner Detector (ID)

20,000 50 cm Box and Line Dynode **ID PMTs**

- 2.6 ns timing resolution
- 2 times SK PMT efficiency

Additional mPMTs:

19 8 cm PMTs + electronics inside single pressure vessel

- Directional information of arrival photons
- Accurate photon counting
- Excellent timing resolution

Outer Detector (OD)

8,000 8 cm PMTs + WLS plates

Inner Detector (ID)

20,000 50 cm Box and Line Dynode **ID PMTs**

- 2.6 ns timing resolution
- 2 times SK PMT efficiency

Additional mPMTs:

19 8 cm PMTs + electronics inside single pressure vessel

- Directional information of arrival photons
- Accurate photon counting
- Excellent timing resolution

ID+OD Electronics

Outer Detector (OD)

Inner Detector (ID)

20,000 50 cm Box and Line Dynode **ID PMTs**

- 2.6 ns timing resolution
- 2 times SK PMT efficiency

Additional mPMTs:

19 8 cm PMTs + electronics inside single pressure vessel

- Directional information of arrival photons
- Accurate photon counting
- Excellent timing resolution

J-PARC Upgrade

T2K talk at 9:50 on 5th Sept - Lukas Berns

ND280 Upgrade

- ND280 is 280 m from the beam source
 - Currently is T2K and will be part of HK
 - Constrain the neutrino flux
 - Precisely measure neutrino cross sections
- ND280 upgrade
 - High angle events
 - Low particle detection thresholds
 - Improved to measure hadronic final states
- Improve acceptance for high-angle and backwards tracks to improve systematic error constraint

Details see Jaafar Chakrani's talk at 16:00 on 6th Sept

WINGS

LONDON

- Water Cherenkov detector
- Tall vertical shaft located ~1km from beam source
- ~1% residual v_e/\bar{v}_e beam components

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy)

Large fraction at far-OA angle

Constrain $\nu_e/\bar{\nu}_e$ cross sections in water

- Approved HK project includes IWCD

Far detector

- 8 times fiducial volume of SK
- 20-inch ID PMTs + mPMTs
- 3-inch OD PMTs + WLS plates

Atmospheric neutrinos

IWCD ND280 Constrain v_e/\overline{v}_e Measure hadronic cross sections in final states water

J-PARC

Astrophysical Neutrinos

- Will upgrade to 1.3 MW
- 2.7×10^{22} POT (protons on target) for 10 HK years

Beam neutrinos

Far detector

- 8 times fiducial volume of SK
- 20-inch ID PMTs + mPMTs
- 3-inch OD PMTs + WLS plates

Atmospheric neutrinos

Diverse physics program!

- Proton decay
- Supernova neutrino

Near Detectors

- Dark matter

Target Statio

Target

proto

I-PARC

IWCDND280Constrain v_e/\overline{v}_e measure hadroniccross sections infinal stateswaterwater

J-PARC

Monito

- will upgrade to 1.3 MW

Beam neutrinos

280m

Decay Volume

110m

Beam Dum

2.7×10²² POT (protons on target) for 10 HK years

Far detector

- 8 times fiducial volume of SK
- 20-inch ID PMTs + mPMTs
- 3-inch OD PMTs + WLS plates

Atmospheric neutrinos

IWCD ND280 Constrain v_e/\overline{v}_e measure hadronic cross sections in final states water

J-PARC

- will upgrade to 1.3 MW
- 2.7×10^{22} POT (protons on target) for 10 HK years 20

Diverse physics program!

- Neutrino oscillation -
- Proton decay
- Supernova neutrino
- Dark matter

Beam neutrinos

HK Long-Baseline Program

Far detector

- 10 years data taking
- 1:3 ν: ν run plan

Atmospheric neutrinos

-Neutrino cross-section model

Analysis Strategy

Far detector

Atmospheric neutrinos

Atmospheric samples are based on SK information and HK size and exposure for 10 years of HK running

- Using SK information scaled for HK POT exposure

- 10 years data taking
- 1:3 ν : $\overline{\nu}$ run plan

Estimate size of flux and crosssection uncertainties using upgraded ND280 & IWCD

Beam neutrinos

J-PARC

 2.7×10^{22} POT for 10 HK years

HK Long-Baseline v_e Spectra

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy) **ZINGS**

LONDO

- Sensitivity to δ_{CP} mainly comes from $\nu_{\mu} \rightarrow \nu_{e}$ appearance
- The amount of v_e -like events signals assuming 10 HK years (2.7 × 10²² POT), 1:3 $v: \bar{v}$, NO, sin² $\theta_{13} = 0.0218$, $\delta_{CP} = 0.0218$.

	$\nu_{\mu} \rightarrow \nu_{e}$	v _µ bar →v _e bar	Beam v_{μ}	Beam v _µ bar	Beam v _e	Beam v _e bar	NC	Total
v-mode v _e CCQE-like	2252.51	11.70	6.53	0.23	326.15	12.34	130.30	2739.76
vbar-mode v _e CCQE-like	257.26	796.55	3.24	4.99	147.70	236.90	177.33	1623.97
ν-mode v _e CC1π-like	207.36	0.23	4.49	0.14	34.46	0.29	10.65	257.63

HK Long-Baseline ν_{μ} Spectra

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy) **VINGS**

LONDON

HK Long-Baseline Systematic Uncertainties Model

T2K 2018 Syst. uncertainties (Phys. Rev. D 103, 112008 (2021))

T	1-ring ν_{μ} -like			1-ring ν_e -like			
Increased run time +	Error source	v-mode	$\bar{\nu}$ -mode	ν-Mode CCQE-like	<i>v</i> -Mode CCQE-like	ν -Mode CC1 π -like	ν-/ν̄-Mode CCQE-like
ND280-upgrade	Flux + Cross section	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%
and IWCD	Detector + FSI +SI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%
	All systematics	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%

HK Improved Syst. uncertainties

	1-ring	ν _μ -like	1-ring ν_e -like					
Error source	v-mode	$\bar{\nu}$ -mode	ν-Mode CCQE-like	<i>v</i> -Mode CCQE-like	ν -Mode CC1 π -like	ν-/ν̄-Mode CCQE-like		
Flux + Cross section	0.81%	0.72%	2.07%	1.88%	2.21%	2.28%		
Detector + FSI +SI	1.68%	1.58%	1.54%	1.72%	5.21%	0.97%		
All systematics	1.89%	1.74%	2.56%	2.53%	5.63%	2.45%		

Impact of systematic uncertainties

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy) ZINGS

- Assume normal mass ordering is true, **improved HK systematic uncertainties** can improve the sensitivity to CP violation.
- After 10 HK-years, **61%** of true δ_{CP} values can be excluded at **5-\sigma** with the improved syst. error model.

Atmospheric neutrinos

- Traveling through a substantial matter density modifies the vacuum oscillation probability
- Mass Ordering sensitivity predominantly comes from the "MultiGeV" upward-going electron neutrinos
- HK has the potential to determine the neutrino mass ordering from atmospheric neutrinos alone.

Upward muon

HK Sensitivity Study

- Using only beam neutrinos, HK has very good sensitivity to CPV but this depends on whether the mass ordering is known.
- By combining **beam** and **atmospheric** neutrinos can achieve 5- σ sensitivity to CPV regardless the true mass ordering 28

- Wrong octant can be excluded at 3- σ for true $\sin^2\theta_{23} < 0.47$ and true $\sin^2\theta_{23} > 0.55$
- 1- σ resolution of Δm_{32}^2 as a function of true sin² θ_{23} , after 10 HK-years

Precision measurements

Some Systematic errors present degeneracies with oscillation parameters, e.g. the detector energy scale uncertainty.

- Current T2K energy scale error is 2.4%, assuming fully correlated and linear at all energies.
- HK target energy scale error is 0.5% .
- Need the development of the proper calibration and analysis strategy!

Detector Energy Scale Uncertainty

- HK target energy scale error 0.5%

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy)

- Different method to estimate energy scale uncertainties of ν_e(ν

 _e) and ν_μ(ν

 _μ) → Separately
- Either increasing the error or separate energy scale uncertainties of $v_e(\bar{v}_e)$ and $v_\mu(\bar{v}_\mu)$ will lose sensitivity

- mPMTs with PMTs to do cross-calibration & Bottom-up approach

The calibration procedure should be able to disentangle and precisely model all fundamental causes of energy scale uncertainties as a function of energy and neutrino flavor.

Neutrino oscillation physics

Neutrino oscillation parameters, Charge Parity Violation

- Upgraded ND280 and IWCD will improve the sensitivity to CPV
- Combined beam and atmospheric neutrinos can achieve 5- σ sensitivity to CPV regardless the mass ordering
- Precision measurements require development of proper calibration and analysis strategies

Neutrino oscillation physics

Neutrino oscillation parameters, Charge Parity Violation

- Upgraded ND280 and IWCD will improve the sensitivity to CPV
- Combined beam and atmospheric neutrinos can achieve 5- σ sensitivity to CPV regardless the mass ordering
- Precision measurements require development of proper calibration and analysis strategies

Search for proton decays

- Largest detector with sensitivity to multiple modes
 - Potential searching for more modes
 - GUT confirmation potential

Neutrino oscillation physics

Neutrino oscillation parameters, Charge Parity Violation

- Upgraded ND280 and IWCD will improve the sensitivity to CPV
- Combined beam and atmospheric neutrinos can achieve 5- σ sensitivity to CPV regardless the mass ordering
- Precision measurements require development of proper calibration and analysis strategies

Search for proton decays

- Potential searching for more modes
- GUT confirmation potential

Neutrino oscillation physics

Neutrino oscillation parameters, Charge Parity Violation

- Upgraded ND280 and IWCD will improve the sensitivity to CPV
- Combined beam and atmospheric neutrinos can achieve 5- σ sensitivity to CPV regardless the mass ordering
- Precision measurements require development of proper calibration and analysis strategies

Search for proton decays

- Potential searching for more modes
- GUT confirmation potential

Supernova neutrinos

Supernova neutrinos

- Expected time profile and event numbers in HK for a supernova at 10 kpc (Livermore simulation)
- Numbers in brackets total interactions integrated over the 10 s burst
- Peak event rate of inverse beta decay events (black) reaches ~50 kHz
- Model discrimination (Astrophys.J. 916 (2021) 15)

Neutrino oscillation physics

Neutrino oscillation parameters, Charge Parity Violation

- Upgraded ND280 and IWCD will improve the sensitivity to CPV
- Combined beam and atmospheric neutrinos can achieve 5- σ sensitivity to CPV regardless the mass ordering
- Precision measurements require development of proper calibration and analysis strategies

Search for proton decays

- Potential searching for more modes
- GUT confirmation potential

Supernova neutrinos

- Potential to have a large statistics if there is a supernova burst
- Distinguish between different explosion mechanism models

Summary

- Hyper-Kamiokande is the next generation neutrino experiment located in Japan
 - 260 kton Underground water Cherenkov far detector
 - 1.3 MW upgraded neutrino beam from J-PARC
 - Upgraded ND280 and additional IWCD
 - Aim to start data taking from 2027

Summary

- Hyper-Kamiokande is the next generation neutrino experiment located in Japan
 - 260 kton Underground water Cherenkov far detector
 - 1.3 MW upgraded neutrino beam from J-PARC
 - Upgraded ND280 and additional IWCD
 - Aim to start data taking from 2027
- Hyper-K has various physics programs
 - CP violation, mass ordering.....
 - Combined beam and atmospheric neutrinos can achieve 5- σ sensitivity to CPV regardless the mass ordering
 - Precision measurements require development of proper calibration and analysis strategies
 - Searching for proton decay, supernova neutrinos

Summary

- Hyper-Kamiokande is the next generation neutrino experiment located in Japan
 - 260 kton Underground water Cherenkov far detector
 - 1.3 MW upgraded neutrino beam from J-PARC
 - Upgraded ND280 and additional IWCD
 - Aim to start data taking from 2027
- Hyper-K has various physics programs
 - CP violation, mass ordering.....
 - Combined beam and atmospheric neutrinos can achieve 5- σ sensitivity to CPV regardless the mass ordering
 - Precision measurements require development of proper calibration and analysis strategies
 - Searching for proton decay, supernova neutrinos
- New collaborators welcome!

Backup

- Slam high-intensity 30GeV proton beam into 90-cm carbon target
 - Focus outgoing hadrons in 3 electro-magnetic focusing horns
 - Switch between v- or \overline{v} -mode by changing the horn polarity
 - Pions decay to muons and $\nu\mu$'s in 100-m-long decay volume
 - Stop interacting particles in beam dump; neutrinos continue on to
- near and far detectors
 - Monitor >5GeV muon beam by Muon Monitor in beam dump
 - Constrain proton interactions by external hadon production
- measurements (NA61, EMPHATIC) to precisely simulate the flux
 - Upgrades to J-PARC accelerator underway now towards 1.3+MW
 - proton beam power for HK

Improved HK Syst. Model

- T2K 2018 (after the near detector fit)
- Improved systematics, calculated by scaling the T2K-2018 error model assuming increased run time + sensitivities from ND280-upgrade and IWCD
 - Scaling uncertainty on flux, cross-section and SK detector systematics by $1/\sqrt{N}$, where N = 8.7 is the relative increase in neutrino beam exposure from T2K to Hyper-K
 - Studies from ND groups used to apply a further constraint to the cross-section model uncertainties:
 - A factor of 3 reduction on all non-quasi-elastic uncertainties
 - A factor of 2.5 reduction on all quasi-elastic uncertainties
 - A factor 2 reduction on all anti-neutrino uncertainties
 - A reduction in neutral current uncertainties to the $\sim 10\%$ level
 - The $\nu_e/\bar{\nu}_e$ cross-section ratio error was varied from ~3.6% to 1% to assess its impact
 - No parameter was allowed to have an uncertainty of less than 1%
- Statistics only (no systematics)

HK Long-Baseline v_e Spectra

HK Long-Baseline v_e Spectra

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy)

22

KINGS College

LONDON

Measurement of θ_{23} Octant

Neutrino Oscillation Workshop Rosa Marina (Ostuni, Italy)

Sensitivity to exclude the wrong $\sin^2\theta_{23}$ octant, as a function of true $\sin^2\theta_{23}$ and HK-years.

The shaded areas exclude $\sin^2\theta_{23}=0.5$ at greater than 3 σ and 5 σ .