DUNE and the neutrino oscillation program at FermiLab, *future and near future*

Luca Stanco, INFN – Padova, <u>stanco@pd.infn.it</u>

On behalf of DUNE collaboration and SBN collaborations

NOW 2022, 4-11 September 2022

Content

- Standard Neutrino Oscillation
- LBNF project
- The DUNE experiment status of the project
- Near Detector
- Perspectives for
 - MH and δ_{CP} determinations
 - astronomical neutrinos (SuperNovae)
 - solar neutrinos
- SBN project at FNAL (MicroBooNE, ICARUS, SBND)

Preamble Big Open Questions in Particle Physics

- What more than the Higgs particle and the "Standard Model"?
- Origin of the Dark Matter and Dark Energy
- The Flavour issue

- Strong hierarchical pattern of quark and charged-lepton masses
- Almost diagonal CKM (quark-mixing) matrix

- LARGE mixing angles in the neutrino sector
- Neutrino spectrum not fully known yet, but certainly not very hierarchical

Neutrinos: What we do & do not know

- Neutral leptons with 3 active flavors
- Tiny small masses
 - Existing limits on sum of neutrino masses are order few hundred meV/c²
- Flavor eigenstates (v_e,v_µ,v_τ) ≠ mass eigenstates (v₁,v₂,v₃)
 - Mixing described by PMNS matrix
 - All mixing angles and mass splittings have been measured
- Neutrinos detected via their interaction products
 - Neutrino interaction cross sections are small, O(10⁻³⁸ cm²/nucleon) at 1 GeV
- May be Majorana or Dirac

- Other kind of "Sterile"
 neutrinos?
- Direct measurement limits currently $\leq 1 \text{ eV/c}^2$
- *More precise measurements of mixing angles needed
- *CP violation in PMNS?
- *Unitarity?

*Very large detectors are needed

- Neutrino-nucleus interaction model has large uncertainties
- Majorana phases?

A not so bright future (to me)

The (experimental) synthesis from the recent Neutrino 2022:

- Oscillations in a decade
- Neutrino masses in two decades
- Neutrino nature in three decades

A different perspective is much more desirable, at least for people "differently young" like me...

- Some kind of sterile neutrinos need to be confirmed yet
- δ_{CP} and MO could be disentangled only through extended PMNS
- PMNS unitarity be broken
- tensions, tensions, tensions...
 possibly based on physics and not on experiment discrepancies...

Panorama

DUNE: What, How, When?

What to measure? How to measure it? When be available?

DUNE/LBNF, a multi-B\$ project, to measure missing parameters of the 3 ν picture, with high precision the others, and sensitivity to SNB and BSM

With artificial beam from 1.2 to 2.4 MW proton beam and multi-kton Liquid-Argon detectors

Starting data taking for oscillations in 8 years from now (or less)

The present scenario

We are entering in the precision era, but there are still 4 results to be obtained, at least at first order :

- 1) Leptonic CP violation (phase δ_{CP})
- 2) Mass ordering (MO)
- 3) (θ_{23} octant)
- 4) Presence or not of more (sterile ?) neutrinos states

Measuring MH AND δ_{CP}

• In the last couple of years oscillation analysis is showing up rather controversial effects, due to correlations and degeneracies

electron-v appearance events, in several years of data taking

- It seems mandatory to measure both MH and δ_{CP} in the same experiment

Comparing scenarios

With 2 or 4 dects, 100 kt-MW-y, shared between FHC and RHC, in 3 y ramp-up

DUNE simulation

T2K -> Hyper-K:

Same baseline Same beam spectrum Same detector technology

NoVA -> DUNE:

Longer baseline Wideband beam Better event reconstruction

> FHC: Forward Horn Current RHC: Reverse Horn Current

DUNE : enhanced by the wide-band beam

The LBNF/DUNE project

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE)

The DUNE Experimental Design

- DUNE TDR (Vol I,III,IV <u>https://iopscience.iop.org/journal/1748-0221/page/extraproc95</u>, Vol II arxiv:2002.03005 for Physics)
- ND CDR (arXiv:2103.13910, Instrument 5 (2021) 4, 31)

Long-Baseline Neutrino Facility (LBNF) Neutrino Beam

- ✓ LBNF will house and deliver beam to detectors built by DUNE Collaboration
- ✓ 60-120 GeV protons from Fermilab's Main Injector
- ✓ Initial power: 1.2 MW (@120 GeV); plan to upgrade to 2.4 MW
- ✓ 200 m decay pipe, angled at South Dakota (Sanford Underground Research Facility- SURF)
- \checkmark Separate v and v-bar and running modes

15

LBNF wide-band beam

At FNAL, Fermi NAtional Lab

Horn-focused neutrino beam line optimized for CP violation sensitivity using genetic algorithm

1.2MW @ 100% efficiency=2x10²¹ pot/year The 3-year ramp-up is equivalent to one year of operation at 1.2MW from Day 1

The LBNF neutrino beam will provide neutrinos and antineutrinos with energies from 0 to 8 GeV

SURF

- Deepest laboratory in the US: 1.5 km underground
- Three main caverns: 4 detectors halls in 2 caverns and 1 support cavern (cryogenics and services)
- Excavation is ongoing (875,000 tons of rock to be excavated)
- FD first module installation second half of 2020's

Previously known as Homestake (gold) Mine close to Lead, in the Black Hills (South Dakota),

50 miles from Mount Rushmore and Crazy Horse statues

Future Laboratories

Experiment Hall

Proposed third generation dark matter and/or 1 T neutrinoless double-beta decay

DUNE at LBNF

Proposed Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility 4850 Level—four 10kT liquid argon detectors

Ross Campus

BHSU Underground Campus
 Low-Background Counting

 CASPAR Compact Accelerator System for Performing Astrophysical Research

MJD MAJORANA DEMONSTRATOR Electroforming laboratory

Excavation at SURF is ongoing

Sanford Underground Research Facility (SURF)

Near Site Conventional Facilities

Status:

Decay pipe

Absorber

- 100% final *design* completed • on 28 Sep 2021 for the **Beamline Complex and Near Detector Complex**
- NSCF will start construction • upon funding availability (possibly better sooner than later)

Schedule summary: LBNF/DUNE

DUNE

INFN

DUNE collaboration

Over 1,300 scientists, from more than 200 Institutions, \geq 37 countries plus CERN

Back in presence, DUNE coll. Meet at FNAL, May. 2022

DUNE – Phase I

- LBNF will provide caverns for 4 detector modules at SURF
 - 1st detector to be installed in NE cavern has horizontal drift (like ICARUS and MicroBooNE)
 - 2nd detector will go into SE cavern and has vertical drift (capitalizing on elements of the dual phase development)

DUNE- Phase I (cont.)

DUNE Phase I:

- Neutrino beam with 1.2 MW intensity
- Two 17kt LAr TPC FD modules
- Underground facilities and cryogenic infrastructure to support four modules
- Near detector: ND-LAr + TMS (movable) + SAND
- The US DOE scope of Phase I was approved in July 2022 (CD1-RR)

DUNE – Phase II

DUNE Phase II:

- Fermilab proton beam upgrade to 2.4 MW
- Two additional 17kt FD modules
- Near detector: ND-LAr + MCND (movable) + SAND
- ND upgrade is driven by improved performance at reducing systematics, not driven by increased beam intensity
- DUNE Phase II will collect twice as many neutrinos

DUNE Far Detector (FD)

DUNE Far Detector Technical Design Reports in arXiv:2002.02967, 2002.03005, Four 17-kt liquid argon TPC modules 2002.03008, 2002.03010 (1483 pages) Horizontal and Vertical-drift detector LAr for the first 2 modules Integrated photon detection Modules will not be identical **TPC Critical features:** LAr ultra-high purity Cathode E Field: Anode uniformity and stability ~ 500 V/cm Horizontal drift: modular Can drift electrons for very large distances wire-plane readout Horizontal drift: 17 kt module 384,000 readout wires 50 "APAs" (2.3 m x 6 m) 12 m high Fiducial 15.5 m wide volume 58 m long Foam Insulation Concrete Liner

Dune at work

 v_e appearance from v_μ beam after 3.5 years (staged)

Need maximal control of prediction under PMNS parameters: fluxes, cross-sections, detector responses

To maximize deconvolution of intrinsic degeneracies perform single measurements for as many as possible sources of systematics effects IPP Near Detector complex

Near Detector (ND) – Phase I

- Role: constrain systematic uncertainties needed to oscillation analyses
 - Measure unoscillated beam flux
 - Measure multiple interaction crosssection channels
- Hall location
 - 574 m from LBNF target
 - -~60 m underground
- Multi-component Near detector
 - Highly segmented LArTPC
 - Magnetized tracker
 - Electromagnetic calorimeter
- Move (part of) ND detectors for off-axis measurements (PRISM concept)

DUNE ND capabilities

>100 million interactions will enable a rich non-oscillation physics program

Capability to move ND (LAr+TMS) for off-axis measurements (DUNE-Prism)

System on Axis for Neutrino Detection

- 1. It **should** monitor the (relevant) beam changes on a **weekly basis** with sufficient sensitivity
- 2. It **should** contribute to remove **degeneracies** when the other components are off-axis (50% of the time)
- 3. It **should** provide an independent measurement of the **flux** and measure the **flavor** content of the neutrino beam on event-by-event basis.
- 4. It **would** add robustness to the ND complex to keep **systematics** and **background** under control
- 5. While delivering all of the above, it **would** contribute to **oscillation analysis** and enjoy the high statistics to perform a plethora of **other physics** measurements.

As a matter of fact SAND will be a multipurpose detector (with innovative compromises between mass, ID and tracking)

Proto-DUNE detectors R&D and goals

- Prototyping production and installation procedures for DUNE Far Detector Design *many of the components for the far detector prototyping at 1:1 scale*
- Validating design from perspective of basic detector performance
- Accumulating test-beam data to understand/calibrate response of detector to different particle species
- Demonstrating long term operational stability of the detector

1 kton massive Liquid Argon detectors

DUNE prototypes

- ProtoDUNEs at CERN with charged particle beam
- 2x1kton cryostats used to validate FD components at full scale.
- Successful run from 2018-2020
- Next phase starting in spring 2023

ArgonCube 2x2 ND-LAr

Demonstrator.

4 independent modules, test

In NuMI beam scheduled in 2022

First R&D and physics results published [JINST 15 (2020) 12, P12004] (see backup for full list)

Perspectives

DUNE Physics Program—Neutrino Oscillation

Three-neutrino oscillations: v_{μ} / \bar{v}_{μ} disappearance, v_e / \bar{v}_e appearance

- Charge-Parity symmetry violation (CPV): δ_{CP}
- Neutrino mass ordering: normal or inverted
- Neutrino mixing parameters

[Eur. Phys. J. C 80 (2020) 10, 978]

$$P(\overline{\nu}_{\mu}^{2} \rightarrow \overline{\nu}_{e}^{2}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Phi_{31} - aL)}{(\Phi_{31} - aL)^{2}} \Phi_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Phi_{31} - aL)}{(\Phi_{31} - aL)} \Phi_{31} \frac{\sin(aL)}{(aL)} \Phi_{21} \cos(\Phi_{31} \pm \delta_{CP})$$

$$+ \dots$$

$$\Phi_{ji} = \frac{1.27\Delta m_{ji}^{2}L}{E_{\nu}} \quad a = \pm \frac{G_{F}N_{e}}{\sqrt{2}} \quad \text{Interplay between mass ordering}$$

$$\int_{1285 \text{ km}}^{0.44} \int_{0.66^{\mu} = 0}^{0.44} \int_{\delta_{CP} = 1/2}^{0.46^{\mu}} \int_{\delta_{CP} = 1/2}^{0.46^{\mu}}} \int_{\delta_{CP} = 1/2}^{0.46^{\mu}} \int_{\delta_$$

Oscillation Sensitivity for DUNE

[Eur. Phys. J. C 80 (2020) 10, 978]

- Reconstructed spectra of selected CC-like events
- Sensitivity assessment includes full FD systematics treatment
- 3.5 years neutrino beam mode
- 3.5 years anti-neutrino beam mode
- ~1000 $\nu_{\rm e}/\nu_{\rm e}$ -bar events in 7years
- ~10,000 ν_{μ}/ν_{μ} -bar events in 7years

Simultaneous fit to four spectra to extract oscillation parameters

Sensitivity to CPV for DUNE

- 5 σ discovery potential for CP violation over >50% of δ_{CP} values
- 7-16° resolution to δ_{CP} , with external input for only solar parameters.

- Simultaneous measurement of neutrino mixing angles and δ_{CP}
- Width of band indicates variation in possible central values of θ_{23}

Perspectives for MH

Many different ways to define "sensitivity"

Only above 5 σ we are "unsensitive" to methodology

- NOvA: Degeneracy with δ_{CP} ?
- PINGU/ORCA: funded ? systematics ? Degeneracy with δ_{CP} and θ_{23} ?
- INO: really ?
- JUNO: technical challenge on energy resolution ? Degeneracy with Δm^2_{atm} ?

MH and θ_{23} Oscillation Physics

INFN

Oscillation Parameter Sensitivity

- Excellent on Δm_{32}^2 and θ_{23} , including octant, and unique PRISM measurement technique that is less sensitive to systematic effects
- Ultimate reach does not depend on external θ_{13} measurements, and comparison with reactor data directly tests PMNS unitarity

BSM searches

- DUNE sensitive to many BSM particles and processes
 - Light dark matter
 - Boosted dark matter
 - Sterile neutrinos
 - Non-standard interactions, non-unitary mixing, CPT violation
 - Neutrino trident searches
 - Large extra dimensions
 - Neutrinos from dark matter annihilation in sun
- Active area of research within phenomenology community as well as the DUNE collaboration
- GLoBES configurations arXiv:1606.09550

Summary for DUNE

Foreseen Analysis Events per 0.25 GeV DUNE v. Appearance 3.5 years (staged) Normal Ordering, δ. 120 Signal (v + v) CC Beam (v + v) CC 100ŀ (v. + v.) CC (v. + v.) CC 80 60 40 20 5 **Reconstructed Energy (GeV)**

protoDUNE

Coming ...

- LBNF/DUNE: the ultimate neutrino facility/observatory
- DUNE will enable very rich physics program in the next decades (LifeCycle 20 years):
 - Neutrino oscillations
 - Studies of MeV-scale neutrinos
 - Many BSM searches
- LBNF and DUNE making rapid progress on facility construction, detector design, and physics analysis
- Expect first DUNE FD data in 2028, oscillation physics starts end of this decade

SBN project(s) at FNAL (MicroBooNE, ICARUS, SBND)

Short-Baseline Neutrino Program at Fermilab

Motivations

- Anomalous MiniBooNE Events
 - Investigate source(s) of low-energy excess (LEE) events observed by MiniBooNE using LArTPCs → MicroBooNE
- Search for Sterile Neutrinos
 - Discovery or definitive exclusion of 1 eV–scale sterile neutrino mass region motivated by LSND and MiniBooNE results
 - Provide verification or refutation of the Neutrino-4 experiment's* evidence for a 7.3 eV², large mixing angle, sterile neutrino
- Neutrino Interactions in Argon
 - Millions of ν_{μ} and tens of thousands of ν_{e} from two neutrino beams (Booster and NuMI)
- Search for Beyond Standard Model Physics
 - Higgs portal dark scalar, large extra dimension models, Lorentz/CPT symmetry violation, non-standard interactions, dark neutrino sectors, etc.

SBN Complex at Fermilab

Neutrino beam(s)

- SBND: 0.25 Hz v, 0.03 Hz cosmic
- ICARUS: 0.03 Hz ν , 0.14 Hz cosmic
 - (+ NuMI: 0.014 Hz v, 0.08 Hz cosmic)
 - SBN Proposal: 6.6 x 10²⁰ POT
 - BNB will operate until LBNF long-shutdown
 ~Jan. 2027 ⇒ with design POT delivery
 - ICARUS > 3X original SBN proposal
 - ICARUS+SBND > 2X original SBN proposal

MicroBooNE collection

(see Giorgia Karagiorgi on Wednesday afternoon)

ICARUS-T600 at FNAL

Aug. 2020: start of TPC/PMT operation

Dec. 2021: CRT installation complete

June 2022: overburden complete

Steady data taking with BNB, NuMI beams since March 2021, in parallel with commissioning activities. Cosmics, v_{μ} , and v_e samples collected for trigger/calibration/reconstruction studies.

Data taking for Physics with BNB and NuMI beams 9 June 2022

SBND

2 x 2m drif

- Ground-up new detector 4 m x 4m x 5m, 112 t active mass LAr
- Incorporating technology • important for DUNE (cryostat, 2-m drift TPC, X-Arapuca photon detectors)

Installation complete and ready to fill in June 2023

SBN Oscillation Sensitivity

SBN proposal Example oscillation at BNB peak energy 0.3 Oscillation Probability [%] Neutrino Energy: 700 MeV v_u disappearance $\Delta m_{41}^2 = 1.5 \text{ eV}^2$ Global 3+1, 3o allowed 10 $\sin^2 2\theta_{ue} = 0.002$ v / v Dis, 3 excluded⁽²⁾ 0.2 SBN 3g ----- SBN 50 Δm²₄₁ (eV²) MicroBooNE ICARUS SBND 10 0 200 400 600 800 (1) S. Gariazzo et al., arXiv:1703.00860 [hep-ph Length of Neutrino Flight [m] (2) M. Dentler et al., arXiv:1803.10661 [hep-ph] 10-2 10-1 P. Machado et al., arXiv:1903.04608V11 $sin^2 2\theta_{\mu\mu}$ v_{μ} disappearance v_e appearance SBND (6.6e20 POT) MicroB $\Delta m_{41}^2 (eV^2)$ SBN update SBN Preliminary $\Delta m_{41}^2 (eV^2)$ Injected Point. (work in progress): $\sin^2 2\theta_{uc} = 0.003$ Injected Point $\Delta m_{41}^2 = 1.32 \text{ eV}^2$ $\sin^2 2\theta_{...} = 0.07$ $\Delta m_{41}^2 = 1.32 \text{ eV}^2$ SBN sensitivities for 6.6 x 10²⁰ protons 90% IceCube ----- 99% IceCube on the BNB target; MiniBooNE (v) 99% CI KARMEN 99% CL 90% MiniBooNE LSND w/ DiF 99% CL 90% MINOS/MINOS- 10^{-1} 10^{-} to be updated to the 00% SBN Stat+Svs SBN Stat+Syst 50 SBN Stat+Syst 50 SBN Stat+Syst 5σ SBN Stat+Syst 5σ SBN Stat+Syst larger dataset 50 SBN Stat-Only 5σ SBN Stat-Only 10^{-2} 10^{-2} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-4} $\sin^2 2\theta_{\mu\mu}$ $\sin^2 2\theta_{\mu e}$

INFN

SBN new analysis

Direct probe of $sin^22\theta_{ee}$ using a neutrino beam rather than lower energy (MeV) reactor antineutrinos

SBN v_{e} <u>disappearance</u>

- ~35,000 intrinsic ν_e at SBND for 6.6 x 10²⁰ BNB POT
- ICARUS will use v_e disappearance from NuMI as part of Neutrino-4 signal investigation

R.Wilson@Snowmass2022

ICARUS/SBN Outlook

- ICARUS operated well in commissioning mode and has begun first physics run
- SBND is on track for operation in late 2023
- ICARUS will reach nominal dataset by mid-2024 and ICARUS+SBND by late 2025
 - 2-3X higher statistics by 2027
- The SBN program will provide a broad spectrum of neutrino and BSM physics and in-depth experience with LArTPC technology and analysis through to the start of DUNE program

R.Wilson@Snowmass2022

Backup slides

The wonderful frame pinpointed for the 3 standard neutrinos, beautifully adjusted by the θ_{13} measurement, left out some relevant questions:

- Mass ordering: MH
- Leptonic Charge-Parity violation: $\delta_{\sf CP}$
- Anomalies and discrepancies in some measurements,
- Mass values
- ...
- Dark Matter
- ...

The importance of measuring δ_{CP}

- Matter/antimatter asymmetry in the Universe requires CP violation
- CP violation in the quark sector has been measured the first time 58 years ago, but this violation does not help very much in understanding what happened soon after the Big Bang (J_{CKM}≈3x10⁻⁵)
- Through leptogenesis, theory links the *v*-mass generation to the generation of baryon asymmetry of the Universe (Fukugita and Yanagida, 1986).
- The Dirac phase δ_{CP} can be one of the ingredients of these mechanisms (and J_{PMNS}≈0.033 sinδ_{CP})
- It is mandatory to measure its value... also because it is one of the few unknowns of the Standard Model (together with neutrino masses)

DUNE Publications

• DUNE collaborators have produced 29 publications..

Title (Most Recent Full Collaborations Publications)	arXiv	Journal
Experiment Simulation Configurations Approximating DUNE TDR	2103.04797	none
Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC	2108.01902	JINST
Probing KDAR in the Sun with DUNE	2107.09109	JCAP
Prospects for Beyond the Standard Model Physics Searches at the Deep Underground Neutrino Experiment	2008.12769	EPJC structure
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform	2007.06722	JINST
Long-baseline neutrino oscillation physics potential of the DUNE experiment	2006.16043	EPJC
Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment	2008.06647	EPJC
Neutrino interaction classification with a convolutional neural network in the DUNE far detector	2006.15052	PRD ^{100.1}
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment	2109.01304	PRD ²⁰⁰⁴

• ...with many others in progress

Title (Nearing Publication)	arXiv
Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora	
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a Convolutional Neural Network	2203.17053
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC	2203.16134
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector	
Deep-Learning-Based Kinematic Reconstruction for DUNE	

Sear

Why Liquid Argon?

Bubble chamber quality of data with added full calorimetry

Liquid Argon Time Projection Chamber (LArTPC)

	Water	9-1	Ne	Ar	Kr	Xe
Boiling Point [K] @ Iatm	373	4.2	27.1	87.3	120.0	165.0
Density [g/cm³]	1	0.125	1.2	1.4	2.4	3.0
Radiation Length [cm]	36.1	755.2	24.0	14.0	4.9	2.8
Scintillation [γ/MeV]	-	19,000	30,000	40,000	25,000	42,000
dE/dx [MeV/cm]	1.9		1.4	2.1	3.0	3.8
Scintillation λ [nm]		80	78	128	150	175

~10\$/L ~500\$/L ~0.5\$/L ~700\$/L ~3000\$/L

Liquid argon: an excellent choice for neutrino detectors

- Dense: 40% more dense than water
- Easily ionizable: 55,000 electrons/cm
- Highly scintillating: possible for photon detector system
- Very good dielectric properties: allow high-voltages in detector
- Long drift distance for ionization electrons (under high purity)
- Abundant & cheap: 1% of the atmosphere

DUNE – Phase 1

- LBNF will provide caverns for 4 detector modules at SURF
 - 1st detector to be installed in NE cavern has horizontal drift (like ICARUS and MicroBooNE)
 - 2nd detector will go into SE cavern and has vertical drift (capitalizing on elements of the dual phase development)

FD design: Horizontal drift LAr TPC

- APA (anode) and CPA (cathode) suspended from ceiling like curtains
- APA with "wrapped" induction and collection planes
- Photon detectors detect Ar scintillation with light guides and SiPMs at the end

FD design: Vertical drift LAr TPC

- Second module built will be Vertical Drift
- Evolution of the double phase concept
- Charge drifted vertically (6.5m), cathode in the middle
- Requires HV= -300kV
- Anode built out of strips etched on PCBs
- Large X-ARAPUCA detectors on cathode and walls.

$\mathsf{KLOE} \to \mathsf{SAND}$

<image>

KLOE experiment run at Laboratori Nazionali di Frascati(Rome) Italy from 1999 until 2018, at DA Φ NE e⁺e⁻ collider, for physics of K and Φ mesons.

Electromagnetic calorimeter

- Lead/scintillating fibers
- 4880 PMT's

Superconducting coil (5 m bore) B = 0.6 T (\int B dI = 2.2 T.m)

- Energy resolution σ/E=5.7%/ √ E(GeV)
- Time resolution $\sigma=54 \text{ ps}/\sqrt{\text{E(GeV)} \oplus 50 \text{ ps}}$

v-beam _ _

Liquid Argon target

Why DUNE needs 2.4 MW

Precision physics of DUNE requires O(1000) kt-MW-yr beam exposure

• We want to achieve this in ~1 decade

- o 46 years in Phase I
- o 23 years with 40 kt but still 1.2 MW
- $\circ~$ 11.5 years with 40 kt and 2.4 MW

C.Marshall@Snowmass2022

Perspectives...

"Experiments" in running:

- NOvA
- T2K
- Cosmology
- SuperNovae

SNB neutrinos

In LArTPC, SNB signal dominated by $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$ electron neutrinos:

In LArTPC, SNB signal dominated by electron neutrinos:

SNB neutrinos

 ν_{e}

Observation of early time development yields sensitivity to neutrino mass ordering and details of SNB model.

 $+ {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

SNB v Simulation & Reconstruction

Work underway on improved event reconstruction and tagging of 5-100 MeV events+ DAQ/triggering

Baryon Number Violation

- Deep underground location and precise particle tracking facilitate DUNE sensitivity to many baryon number violating processes including:
 - Neutron-antineutron oscillation
 - − p-> ν K⁺, n \rightarrow K⁺e⁻
 - $p \rightarrow \pi^0 e^+$

- Sensitivity based on full MC and automated reconstruction and event selection
- Challenges include atmospheric neutrino background and final state interactions within the argon nucleus

Solar neutrinos

- Solar neutrino sensitivity to ⁸B and discovery potential of hep flux, with capability to measure solar mixing parameters θ_{12} and Δm^2_{12}
- ve flux \rightarrow measure neutronization burst
- Main backgrounds: neutrons and Rn-induced alpha-gamma interactions

FNAL neutrino beams

SBN cross sections measurements

SBND High-statistics measurements of many signatures and can observe rare channels such as heavy baryons (Λ^0 , Σ^+), NC coherent single photon production, etc.

ICARUS can leverage its off-axis position in the NuMI beam and observe a $v_{\rm e}$ enriched flux for $v_{\rm e}\text{-Ar}$ measurements

SBN cross section measurements will inform cross section theory & generator work, and lay groundwork to lower the systematic uncertainties for current and future high-precision experiments such as DUNE.

Neutrino-4 oscillation check (ICARUS)

Given the ICARUS at FNAL similarities to NEUTRINO-4, the initial ICARUS data (~1 year) should allow to settle the two NEUTRINO-4 (~7 eV²) sterile-v claims:

- Oscillations produce disappearance pattern of v_{μ} in BNB and of v_{e} in NuMI, in same L/E ~ 1-3 m/MeV of Neutrino-4 (at ~100 times higher energy), focusing on contained quasi-elastic CC interactions;
- L/Ev effect mostly related to variation of E_v with a large and almost constant L: despite the 725 m NuMI decay tunnel v_e mostly produced by kaons decaying close to target.

Liquid Argon Time Projection Chamber (LArTPC)

Primary detector technology for DUNE

- Detailed images of events
- Excellent spatial and calorimetric resolutions

Far Detector Single Phase Technology – Liquid Argon Time Projection Chamber

- LAr TPC: excellent tracking and calorimetry
- Suitable for very large detectors high signal eff. and bkg. discrimination
- High resolution 3D reconstruction charged particles ionize Ar; electrons drift to anode wires (~ms) for xy coordinate; drift time – z coordinate
- Ar scintillation light (~ns) detected by photon detectors provides t0

D

APA concept

Core detector element: Anode Plane Assemblies (APA) with integrated Cold Electronics Boards and Ph.Detector modules

Each APA : 960 X, 800 V, 800 U, 960 G (un-instrumented) wires

10 Photon Detectors are installed into each APA frame

20 ColdElectronics Boxes mounted onto the APA frame and connected to the wires - 2560 Channels-Wire

• The modular approach to detector construction enables the construction of detector elements to take place in parallel and at multiple sites.

This will be an essential approach for the DUNE Far Detector

The ProtoDUNE SP Detector

ProtoDUNE SP

- Six Anode Plane Assemblies (APA)
 - 3 APAs on each side
- Central cathode plane
 - -180 kV nominal
- Field Cage for field shaping
 - shaped profiles / G-10 I-Beam
 - Constructed in panels
- Ground Planes

The LAr-TPC detector

DUNE Systematics: TDR

- Systematics analysis building on expertise developed in MINERvA, T2K, and NOvA
 - "DUNEResponse" \leftarrow "T2KReweight"
- CAFAna fitting framework facilitates more sophisticated treatment of systematic uncertainty than was possible for CDR
 - Systematic uncertainties in TDR will be based on detailed evaluation of flux, neutrino interaction, and detector uncertainties
 - Sensitivity calculations will be based on fits combining information from near and far detectors
- Flux and interaction systematics evaluated using reweighting technique (including GENIE and non-GENIE reweights)
 - Impact of systematic variations propagated through full analysis chain
 - Ability to consider systematics impacting kinematic distributions as well as normalization
- Detector systematics evaluated within the fit
 - Detector calibration task force evaluating magnitude and sources of detector uncertainty

YUKAWA HALL KYOTO

RIFP-641 January 1986

Baryogenesis without Grand Unification

M. Fukugita

Research Institute for Fundamental Physics, Kyoto University

Kyoto 606, Japan

and

T. Yanagida

Institute of Physics, College of General Education, Tohoku University

Sendai 980, Japan

Abstract

A mechanism is pointed out to generate cosmological baryon number excess without resorting to grand unified theories. The lepton number excess originating from Majorana mass terms may transform into the baryon number excess through the unsuppressed baryon-number violation of electroweak processes at high temperatures.

Classifying the free parameters of the Standard Model

The free parameters in the electroweak Standard Model for one generation are

- the two gauge couplings g, g' for the $SU(2)_L$ and $U(1)_Y$ gauge groups;
- the two parameters μ and λ in the potential $V(\Phi)$;
- the Yukawa couplings Y_u, Y_d, Y_e and Y_{ν} .

Adding the QCD sector and two more generations of quarks and leptons, the Standard Model contains at least 26 free parameters:

- 3 gauge couplings
- ► 6 quark masses
- 6 lepton masses
- ► 3+3 mixing angles
- ▶ 1+1 CP-violating phases
- 1 W or Z mass
- 1 Higgs mass
- ► 1 CP-violating angle

Physics beyond the Standard Model?

► The problem of mass:

What is the origin of particle masses? Is it the SM Higgs field? What stabilizes the Higgs mass? What sets the scale of fermion masses?

► The problem of unification:

Is there a simple framework for unifying all particle interactions?

► The problem of flavour:

Why are there so many types of quarks and leptons? What is the origin of CP-violation?

Cosmological problems:

What is the origin of the baryon-antibaryon asymmetry? What is the nature of dark matter and dark energy?

