

I2K
 experiment

$$
\nu_{\tau}, \nu_{\tau}, \nu_{\tau}, \nu_{\tau}, \nu_{e}, \nu_{\mu}, \nu_{\mu} \longleftarrow \nu_{\mu}, \nu_{\mu}, \nu_{\mu}, \nu_{\mu}, \nu_{\mu}, \nu_{\mu}, \nu_{\mu}
$$

- Study oscillation of neutrino beam from J-PARC accelerator
- ~500 collaborators from institutions in 14 countries

ν-oscillation

 For neutrinos flavor basis \neq Hamiltonian basis. \rightarrow Flavor $\left(\nu_{e}\left|\nu_{\mu}\right| \nu_{\tau}\right)$ oscillates over $L \times \Delta m^{2} / E$, amplitude controlled by (PMNS) mixing matrix U :| | | atmospheric | reactor | solar | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $U=$ | $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta_{C P}} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta_{C P}} & 0 & c_{13}\end{array}\right)$ | $\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)$ | $\begin{aligned} c_{i j} & \equiv \cos \theta_{i j} \\ s_{i j} & \equiv \sin \theta_{i j} \end{aligned}$ |

normal ordering (NO) inverted ordering (IO)
Open questions:

- value of $\delta_{\mathrm{CP}} \rightarrow$ if $\sin \delta_{\mathrm{CP}} \neq 0, \mathrm{CP}$ violation
- sign of Δm_{32}^{2} (mass ordering)
- is θ_{23} maximal? octant? (i.e. $\theta_{23}<\frac{\pi}{4}$ or $\theta_{23}>\frac{\pi}{4}$)

For $\delta_{\mathrm{CP}}, \mathrm{MO}$ look for $\nu / \bar{\nu}$ difference of $\nu_{\mu} \rightarrow \nu_{e}$ appearance
Super-Kamiokande

Neutrino beam

- 30 GeV protons produce π, K in 90 cm graphite target

- Three magnetic horns selectively focus π^{+}, K^{+}or π^{-}, K^{-}to produce ν_{μ} or $\bar{\nu}_{\mu}$ beam (decay in-flight).
- Narrowband beam thanks to off-axis technique.

INGRID on-axis detector

- Iron-scintillator sandwich detectors monitor neutrino beam direction and intensity

ND280 off-axis detector

- Active scintillator + passive water targets
- Tracking with time projection chambers
- Magnetized for charge and momentum measurement

WAGASCI + BabyMIND

- Latest addition at intermediate 1.5° off-axis flux
- Water target with cuboid lattice scintillators for high angle acceptance
- Compact magnetized iron muon range detector
- First xsec meas. published: PTEP, ptab014 (2021)

- Good μ / e PID from ring shape for improved neutron tagging!
Photos: "Super Kamiokande refurbishment" ICRR (2018)

SuperK - the far detector

After addition of Gd...

Exponential decrease of \#events after beam timing consistent with Gd capture time constant (115 $\mu \mathrm{s}$)

Dataset

same data, many analysis improvements!

This talk
based on Neutrino 2022

515 kW operation!
Additional run 11 data taken early 2021 (with Gd at SK), not used in this analysis
ν-mode : $\bar{\nu}$-mode ~ $6: 5$

Analyzed: 3.6×10^{21} protons on target (POT)

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements + interaction model + external constraints
\rightarrow unoscillated flux \times xsec
- 6 samples at SK
$\rightarrow \nu_{\mu}$ disappearance +
ν_{e} appearance

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements
+ interaction model
+ external constraints
\rightarrow unoscillated flux \times xsec
- 6 samples at SK
$\rightarrow \nu_{u}$ disappearance +
ν_{e} appearance

Tuned run1-10b flux at SK

SK: Neutrino Mode, \boldsymbol{v}_{μ}
T2K Preliminary

Beam line modeling

\leftarrow
Beam monitors

More realistic modeling of cooling water in horns slightly increased uncertainty at flux peak

Hadron production experiments

Hadron interaction uncertainty at high-E reduced thanks to higher-statistics NA61 measurement that includes kaon yields from replica of T2K target.

Thin target data Mainly Eur. Phys. J. C (2016) 76:84

Replica target data
Eur. Phys. J. C (2019) 79:100

New NA61 measurements are being performed for further reduction in the future!

Photos from this summer (by Y. Nagai, Eric D. Zimmerman, NA61/SHINE)

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements + interaction model + external constraints \rightarrow unoscillated flux \times xsec
- 6 samples at SK
$\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

- ND280 me
+ interact
+ externa
\rightarrow unoscl

Significant updates to interaction model

CCQE based on Spectral Function model tuned to e-A scattering data.

- uncertainty on nucl. shell structure
- $|\mathbf{q}|^{2}$-dependence of removal energy

Replace empirical freedom by physics-motivated low- Q^{2} modeling:

- optical potential
- Pauli blocking

Uncertainties for tagging protons

- 2p2h separation in pp and pn
- nucleon FSI

Resonant based on Rein-Sehgal model with RFG nuclear model.

New tune to bubble chamber data
New uncertainties including effective binding energy.

Analysis strategy

FGD1 $v_{\mu} \mathbf{C C O} \pi$ Np
Post ND-fit

- Beam monitors + had production experimen

22 samples separated by

ata
CC 2p2h
CC Coh 1π CC Coh 1π NC modes

CCQE CC Res 1π CC Other $\square \overline{\mathrm{v}}$ modes

1. π, p, γ multiplicity
\rightarrow interaction mode
Finer sample separa-
Eion in this analysis!

- thi

$$
\therefore
$$

$$
\begin{aligned}
& \circ \\
& 0 \\
& \text { E } \\
& 0
\end{aligned}
$$

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements
+ interaction model
+ external constraints
\rightarrow unoscillated flux \times xsec

Right-sign

Wrong-sign bkg.

22 samples separated by
2. lepton charge
\rightarrow wrong-sign bkg
(in antineutrino mode)

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements + interaction model + external constraints \rightarrow unoscillated flux \times xsec

C target

C+O target

22 samples separated by
3. $\mathrm{C} / \mathrm{C}+\mathrm{O}$ target
$\rightarrow \mathrm{v}+\mathrm{O}$ xsec

Active
scintillator \downarrow

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux

Fit result with correlated flux $\times \mathrm{xsec}$ propagated to far detector analysis via covariance matrix or joint ND+FD fit.
Both methods give consistent results.

ND fit p-value: 10.9\% ($>5 \%$ threshold)

- ND280 measurements
+ interaction model
+ external constraints
\rightarrow unoscillated flux \times xsec
- 6 samples at SK
$\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements
+ interaction model
+ external constraints
\rightarrow unoscillated flux \times xsec

6 samples at SK
$\rightarrow \nu_{u}$ disappearance + ν_{e} appearance

Fit result with correlated flux $\times \mathrm{xsec}$ propagated to far detector analysis via covariance matrix or joint ND+FD fit.
Both methods give consistent results.

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements + interaction model + external constraints \rightarrow unoscillated flux \times xsec

Fit result with correlated flux $\times x$ sec propagated to far detector analysis via covariance matrix or joint ND+FD fit.
Both methods give consistent results.

Total syst uncertainty on neutrino mode $1 \mathrm{R} \mu$ events at SK

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements + interaction model + external constraints
\rightarrow unoscillated flux \times xsec
- 6 samples at SK
$\rightarrow \nu_{\mu}$ disappearance +
ν_{e} appearance

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements + interaction model + external constraints \rightarrow unoscillated flux \times xsec
- 6 samples at SK
$\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

Analysis strategy

- 6 samples at SK
$\rightarrow \nu_{\mu}$ disappearance + ν_{e} appearance

T2K preliminary

Analysis strategy

- Beam monitors + hadron production experiments \rightarrow neutrino flux
- ND280 measurements
+ interaction model
+ external constraints
\rightarrow unoscillated flux \times xsec
- 6 samples at SK
$\rightarrow \nu_{\mu}$ disappearance +
ν_{e} appearance

Constraints on θ_{13}

- T2K's θ_{13} constraint ($\nu_{\mu} \rightarrow \nu_{e}$ appearance) consistent with the much stronger constraint from reactor experiments $\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right.$ disappearance)
- Unless otherwise noted, reporting the T2K+Reactor constraints on the other oscillation parameters, especially important for δ_{CP}, and θ_{23} octant
Δm_{32}^{2} vs. θ_{23}

Atmospheric mixing parameters

World-leading measurement of atmospheric params still compatible with both octants, very weakly preferring upper

- New interaction model and ND samples cause largest change compared to 2020
- Multi-ring $\nu_{\mu} \mathrm{CC} 1 \pi$ sample only gives small contribution due to being above oscillation maximum

ν_{e} vs. $\bar{\nu}_{e}$ appearance

Octant

- Bi-event plot illustrates origin of data constraints.
- Best-fit δ_{CP} around maximal CP-violation $-\frac{\pi}{2}$
- Weak preference for Normal ordering with Bayes factor 2.8

$$
=P_{\mathrm{NO}} / P_{\mathrm{IO}}
$$

- Weak preference for upper octant with Bayes factor 3.0

$$
=P_{\text {upper }} / P_{\text {lower }}
$$

ν_{e} vs. $\bar{\nu}_{e}$ appearance

Octant

ν_{e} vs. $\bar{\nu}_{e}$ appearance

Octant

- Weak preference for

ν_{e} vs. $\bar{\nu}_{e}$ appearance

Octant

Posterior prob.	$\sin ^{2} \theta_{23}<0.5$	$\sin ^{2} \theta_{23}>0.5$	Sum

- Weak preference for upper octant with Bayes factor 3.0 $=\frac{P_{\text {upper }}}{P_{\text {lower }}}=\frac{0.75}{0.25}$

ν_{e} vs. $\bar{\nu}_{e}$ appearance

Octant

S	Posterior prob.	$\sin ^{2} \theta_{23}<0.5$	$\sin ^{2} \theta_{23}>0.5$	Sum
인	$\mathrm{NO}\left(\Delta m_{32}^{2}>0\right)$	0.20	0.54	0.74
O	$\mathrm{IO}\left(\Delta m_{32}^{2}<0\right)$	0.05	0.21	0.26
\%	Sum	0.25	0.75	1.00

- Bi-event plot illustrates origin of data constraints.
- Best-fit δ_{CP} around maximal CP-violation $-\frac{\pi}{2}$
- Weak preference for Normal ordering
with Bayes factor 2.8 $=P_{\mathrm{NO}} / P_{\mathrm{IO}}$
- Weak preference for vious analysis upper octant with Bayes factor 3.0 $=P_{\text {upper }} / P_{\text {lower }}$ than in pre-

Constraints on δ_{CP} and mass ordering

A = Neutrino2020 results including PDG 2019
$\mathrm{B}=\mathrm{A}+2022 v$ interaction model with new ND samples
C $=\mathrm{B}+\mathrm{PDG} 2021$
T2K Run 1-10, 2022 Preliminary

- Large region excluded at 3σ

- CP-conservation $\{0, \pi\}$ excluded at 90%, π is within 2σ
- In checks for biases caused by xsec model choices, left (right) $90 \% \mathrm{Cl}$ edge moves at most by 0.06 (0.05)
- Slightly weaker constraint compared to 2020 analysis, mainly due to updated model with new ND samples
- Weak preference of normal ordering

Jarlskog invariant

T2K Run 1-10, 2022 Preliminary

- 1σ
-2σ
- 30
__ prior flat in δ_{CP}
-------- prior flat in $\sin \left(\delta_{\mathrm{CP}}\right)$
- $J_{\mathrm{CP}}=s_{13} c_{13}^{2} s_{12} c_{12} s_{23} c_{23} \sin \delta_{\mathrm{CP}}$ parameterization*-invariant measure of CP violation
- Constraint depends on δ_{CP} prior and $\sin ^{2} \theta_{23}$,

CP conservation ($J_{\mathrm{CP}}=0$) currently inside of 2σ credible region (and 1D credible interval)

Robustness studies

- Test interaction model for biases using fits to "simulated data" from theory- or data-driven alternative interaction models
- For θ_{23} no significant biases observed
- For Δm_{32}^{2} small bias observed \downarrow
additional gaussian uncertainty with $\sigma=2.7 \times 10^{-5} \mathrm{eV}^{2}$ is added to compensate
- For δ_{CP} we report effect on confidence intervals, but no change of main conclusions

Continuum Random-Phase Approximation

- Phys. Rev. C, 65:025501, 2002,
- Phys. Rev. C, 92(2):024606, 2015

Robustness studies

- Test interaction model for biases using fits to "simulated data" from theory- or data-driven alternative interaction models
- For θ_{23} no significant biases observed
- For Δm_{32}^{2} small bias observed \downarrow additional gaussian uncertainty with $\sigma=2.7 \times 10^{-5} \mathrm{eV}^{2}$ is added to compensate
- For δ_{CP} we report effect on confidence intervals, but no change of main conclusions

Continuum Random-Phase Approximation

- Phys. Rev. C, 65:025501, 2002,
- Phys. Rev. C, 92(2):024606, 2015

Robustness studies

- Test interaction model for biases using fits to "simulated data" from theory- or data-driven alternative interaction models
- For θ_{23} no significant biases observed
- For Δm_{32}^{2} small bias observed \downarrow additional gaussian uncertainty with $\sigma=2.7 \times 10^{-5} \mathrm{eV}^{2}$ is added to compensate
- For δ_{CP} we report effect on confidence intervals, but no change of main conclusions

Continuum Random-Phase Approximation

- Phys. Rev. C, 65:025501, 2002,
- Phys. Rev. C, 92(2):024606, 2015

Robustness studies

- Test interaction model for biases using fits to "simulated data" from theory- or data-driven alternative interaction models
- For θ_{23} no significant biases observed
- For Δm_{32}^{2} small bias observed \downarrow
additional gaussian uncertainty with $\sigma=2.7 \times 10^{-5} \mathrm{eV}^{2}$ is added to compensate

- For δ_{CP} we report effect on confidence intervals, but no change of main conclusions

Comparison of released contours (not joint fit)
NOvA results: A. Himmel (2020) Zenodo, (preliminary)
SK results: Y. Nakajima (2020) Zenodo, (preliminary)
NOvA and T2K use Feldman-Cousins, SK use fixed $\Delta \chi^{2}$

- Joint fits between experiments with different oscillation baselines/energies and detector technologies
\rightarrow expect increased sensitivity in δ_{CP}, mass ordering, θ_{23} octant beyond stats increase from resolved degeneracies and syst constraints
- important to understand potentially non-trivial syst. correlations between experiments

CP and mass ordering sensitivity

-SK Atmospheric

- Resonance in Earth mantle \& core sensitive to mass ordering
- Weakly sensitive to δ_{CP} via normalization of sub-GeV e-like

T2K Accelerator ${ }_{7}$

- Anti-correlated change of $\nu_{e}, \bar{\nu}_{e}$ appearance probability $\rightarrow \delta_{\mathrm{CP}}$
- For large changes also weakly sensitive to mass ordering

CP and mass ordering sensitivity

-SK Atmospheric

年

!

- Resonance in Earth mantle \& core sensitive to mass ordering
- Weakly sensitive to δ_{CP} via normalization of sub-GeV e-like
©
 ,

- Anti-correlated change of $\nu_{e}, \bar{\nu}_{e}$ appearance probability
- For large changes also weakly sensitive to mass ordering

CP and mass ordering sensitivity

 SK Atmospheric

When combined, can resolve degeneracy and have better CP violation sensitivity!

CP and mass ordering sensitivity

SK Atmospheric

When combined, can resolve degeneracy and have better CP violation sensitivity!

CP and mass ordering sensitivity

SK Atmospheric

- Weakly sel normalizat

Run1-10 Preliminary

Atmospheric μ-like samples

Systematic correlations

- Overlapping true energy region \rightarrow shared interaction model to capture correlations
\rightarrow Bonus: ND constraint for atmospherics!
- Same Super-K detector used by both experiments \rightarrow estimate contribution from detector syst. correlations

Monday afternoon, Session I parallel, Junjie Xia,
"T2K-SK joint ν oscillation sensitivity"

Measurements of

ν cross-section at ND

- First joint measurement using different fluxes \uparrow
- Many other joint measurements ongoing
- C/O
- $\nu_{\mu} / \bar{\nu}_{\mu}$
- Also challenging low-rate measurements

Neutron multiplicity at SK

- Neutron tagging at SK very interesting for $\nu / \bar{\nu}$ and CC/NC separation, requires good prediction of multiplicity
- Measured multiplicity using T2K beam, all generators over-predict
- Note: measurement uses data before adding Gd

Beam line upgrade

ND280 upgrade

- Increase beam power from ~500 kW to 1.3 MW via upgrades to main ring power supply and RF (mostly increased rep rate)
- Many upgrades to neutrino beam line (target, beam monitors, ...) ongoing to accept 1.3 MW beam
- Increase horn current $250 \mathrm{kA} \rightarrow 320 \mathrm{kA}$ for $\sim 10 \%$ more neutrinos/beam-power and reduced wrong-sign background

Reduce xsec systematics and better understanding of nuclear effects.

Hyper-Kamiokande / IWCD

New 1 kt scale "intermediate waterCherenkov detector" planned

Tuesday morning, Session II plenary, Zhenxiong Xie,
"Oscillation physics with Hyper-Kamiokande"

Tuesday afternoon, Session II parallel, Tailin Zhu,
"HK and the Intermediate Water Cherenkov Detector"

Summary

- Latest T2K neutrino oscillation results using 3.6×10^{21} protons on target, with many improvements at each level of analysis.
- CP conserving values of δ_{CP} excluded at 90%, large range excluded at 3σ.
- Weak preference for normal ordering and upper octant.
- Ongoing joint analyses with SK / NOvA, xsec and neutron multiplicity measurements

T2K Run 1-10, 2022 Preliminary

- Exciting perspective for future: new detectors, stronger beam, ...

backup

Systematic uncertainties

Before ND fit T2K Run 1-10, 2022 Preliminary

		1 R		MR							$1 \mathrm{R} e$				
Error source (units: \%)	FHC	RHC	FHC CC1 π^{+}	FHC	RHC	FHC CC1 π^{+}	FHC/RHC								
Flux	5.0	4.6	5.2	4.9	4.6	5.1	4.5								
Cross-section (all)	15.8	13.6	10.6	16.3	13.1	14.7	10.5								
SK+SI+PN	2.6	2.2	4.0	3.1	3.9	13.6	1.3								
Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6								

After ND fit T2K Run 1-10, 2022 Preliminary

	1R		MR								1R e		
Error source (units: \%)	FHC	RHC	FHC CC1 π^{+}	FHC	RHC	FHC CC1 π^{+}	FHC/RHC						
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2						
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4						
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3						
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7						
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2						
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5						

Neutrino mode

$1+2 R \mu+\pi$
(CC1 rich)

Antineutrino mode

μ-like event distributions

Neutrino mode

Antineutrino mode

1Re

e-like event distributions

Best-fit values

Parameter	Best fit			
Data	T2K only		T2K + reactor	
Hierarchy	Normal	Inverted	Normal	Inverted
$\sin ^{2}\left(2 \theta_{13}\right)$	0.103	0.114	0.0861	0.0865
$\sin ^{2}\left(\theta_{13}\right) / 10^{-3}$	$26.6_{-5.8}^{+2.8}$	$29.3_{-6.1}^{+3.1}$	$22.0_{-0.6}^{+0.76}$	$22.1_{-0.63}^{+0.74}$
δ_{CP}	$-2.25_{-0.75}^{+1.39}$	$-1.25_{-0.91}^{+0.69}$	$-2.18_{-0.47}^{+1.22}$	$-1.37_{-0.68}^{+0.52}$
$\Delta m_{32}^{2}(\mathrm{NH}) / / \Delta m_{31}^{2} \mid(\mathrm{IH})\left[10^{-3} \mathrm{eV}^{2} / \mathrm{c}^{4}\right]$	$2.506_{-0.058}^{+0.048}$	$2.474_{-0.056}^{+0.049}$	$2.506_{-0.059}^{+0.047}$	$2.473_{-0.054}^{+0.051}$
$\sin ^{2}\left(\theta_{23}\right)$	$0.466_{-0.015}^{+0.106}$	$0.465_{-0.015}^{+0.103}$	$0.559_{-0.078}^{+0.018}$	$0.560_{-0.041}^{+0.019}$
$-2 \ln L$	651.433	652.254	651.584	653.222
$-2 \Delta \ln L$	0	0.821	0	1.638

T2K Run 1-10, preliminary

Understanding $\cos \delta$ sensitivity

Understanding $\sin \delta, \mathbf{M O}$ sensitivity

Bi-event plots to illustrate constraints

- Note: especially for μ-like samples the number of events only shows a partial picture

[^0]
Bayesian credible intervals

- Priors flat in plotted variables are assumed
- Top two plots marginalized over mass ordering with uniform prior
- Qualitatively similar results to frequentist fits.
- Application of reactor constraint on θ_{13} results in preference of upper octant.

Feldman Cousins implementation

- For proper estimation of $\delta_{\mathrm{CP}}, \theta_{23}$ confidence intervals, we use Feldman Cousins method:
- At couple true $\delta_{\mathrm{CP}}+\mathrm{MH}$ values, generate 50 k toy experiments. θ_{13} is sampled from reactor prior. $\theta_{23}, \Delta m_{32}^{2}$ are sampled from an Asimov contour with true params set to data-best-fit point.
- Fit each toy to calculate $\chi^{2}\left(\delta_{\mathrm{CP}}, \mathrm{MH}\right)$ curves, and order toys according to $\Delta \chi_{\text {true }}^{2}=\chi^{2}\left(\delta_{\text {true }}, \mathrm{MH}_{\text {true }}\right)-\min _{\delta, \mathrm{MH}} \chi^{2}(\delta, \mathrm{MH})$ Define lower 68.3\%, 90\%, ... quantiles as critical values $\Delta \chi_{c}^{2}$
- Connect critical values for all true δ_{CP} values (linear interpolation) and define confidence interval by intersection with data- $\Delta \chi^{2}$ curve.

Causes of coverage issues

- Physical boundaries decrease $\Delta \chi_{c}^{2}$:
$-1<\sin \delta_{\mathrm{CP}}<1$ and $\sin ^{2} 2 \theta_{23}<1$
- Discrete degrees of freedom, in particular degeneracies increase $\Delta \chi_{c}^{2}$:

8-fold degeneracy of
$\left(\theta_{23}\right.$ octant $) \times($ sign of $\cos \delta) \times(\mathrm{MO})$

- Non-trivial effect due to prior distribution of nuisance params in the toys

8-fold degeneracy seen for Asimov sensitivity at true NO, lower octant, $\delta=0 \downarrow$

Critical values for δ_{CP}

At high CL start to see the $\sin \delta$ boundary in other mass ordering

Evaluation of confidence intervals with Feldman-Cousins method

Critical values for $\sin ^{2} \theta_{23}$

Normal ordering
Inverted ordering

Evaluation of confidence intervals with Feldman-Cousins method

Confidence level	Interval (NH)	Interval (IH)
1σ	$[0.460,0.491] \cup[0.526,0.578]$	
90%	$[0.444,0.589]$	$[0.525,0.582]$
2σ	$[0.437,0.594]$	$[0.459,0.588]$

T2K Run 1-10, preliminary

[^0]: 68% syst err. at best-fit
 v Best-fit

 - Data (68% stat err.)

