Neutrino oscillations unlocked

Max-Planck-Institut fur Kernphysik, Heidelberg, Germany

NOW 2022, Ostuni
September 5, 2022

105 papers with neutrino oscillation in titles since September 2021

Oscillations in vacuum

Wave packets of the eigenstates of propagation v_{i}

Entanglement with accompanying particles

Vacuum : VEV $V(x, t)$, interactions of v with VEV $h \vee \rightarrow m, \theta, h=h(\langle\tau\rangle)$

Interference: coherence at production propagation, detection

NO:
effect of propagation in space - time
Quantum mechanical effect (superposition, interference)

Modification of geometry of $x-t$, metrics, GR, NO in the GW background

Tests of QM, modification of QM, evolution equation..

Oscillations in media

Classical fields (e.g. magnetic fields)

Matter Particle densities

From microscopic picture: scattering on individual electrons, to macroscopic one in terms of effective potentials.

Interactions with scalar bosons (DM) $\langle\phi\rangle \rightarrow \phi$
Effective mass squared $m^{2} \sim n_{\phi} \sim z^{3}$ increases with decrease of t_{U}

Oscillating neutrino medium - treatment as open system

Content

Space-time localization diagrams
Coherence, entanglement and wave packets Matter, vacuum and propagation

Talks on other aspects of oscillations
B. Dasgupta,
L. Johns
M. Blasone

Space-time Localization diagyams

Space-time localization diagram

E.Kh. Akhmedov, D. Hernandez, A.Y.S. 1201.4128 [hep-ph]

Reflects computations of oscillation amplitude in QFT, visualizes various subtle issues

Produced and propagated neutrino state

$$
\left|v^{\mathrm{P}}\right\rangle=\psi_{1}^{\mathrm{P}}\left|v_{1}\right\rangle+\psi_{2}^{\mathrm{P}}\left|v_{2}\right\rangle
$$

where the wave packets

$$
\psi_{i}^{p}=\psi_{i}^{P}\left(x-v_{i} t\right) \quad v_{i}-\text { group velocities }
$$

Detected state

$$
\begin{aligned}
& \left|v^{D}\right\rangle=\psi_{1}^{D}\left|v_{1}\right\rangle+\psi_{2} D\left|v_{2}\right\rangle \\
& \psi_{i}^{D}=\psi_{i}^{D}\left(x-x_{D}, t-t_{D}\right)-\text { the detection WP }
\end{aligned}
$$

Amplitude: projection of propagated state onto detection state:
For simplicity $\psi_{i}^{D}\left(x-x_{D}, t-t_{D}\right)=\delta(x-L) \psi_{i}^{D}\left(t-t_{D}\right)$
L- baseline

$$
A\left(L, t_{D}\right)=\left\langle v^{D} \mid v^{P}\right\rangle=\Sigma_{i} \int d t \psi_{i}^{D^{*}}\left(t-t_{D}\right) \psi_{i}^{P}\left(L-v_{i} t\right)
$$

Space-time localization diagram

Oscillation probability

Further integration over interval of baseline L due to finite sizes of the source and detector

Detection

$$
\sigma_{t}^{D} \ll \sigma_{t}^{P}
$$

short detection coherence time

$$
\psi_{i}^{D}\left(t-t_{D}\right) \sim \delta\left(\dagger-t_{D}\right)
$$

$$
A_{i}\left(L, t_{D}\right) \sim \psi_{i}^{P}\left(L-v_{i} t_{D}\right)
$$

Interference is determined by overlap of produced WP

two extreme cases

$$
\sigma_{t}^{D} \gg \sigma_{t}^{P}
$$

long detection coherence time
$A_{i}\left(L, t_{D}\right) \sim \psi_{i}{ }^{D}\left(L / v-t_{D}\right)$
restoration of coherence if

$$
\sigma_{t} D \gg t_{\text {sep }}
$$

Production

E.Kh. Akhmedov and A.Y.S. [hep-ph]

WP's are determined by localization region of the production process: overlap of localization regions of all particles involved but neutrinos.
E.g. in the β decay, $N \rightarrow N^{\prime}+e^{-}+\bar{v}$

If N^{\prime} and e^{-}are not detected or their interactions can be neglected localization of process is given by localization of atom N

The latter is determined by time between two collisions of N, \dagger_{N}

$$
\sigma_{x} \sim v_{v} \dagger_{N} \sim X_{N} c / v_{N}
$$

enhancement factor

Entanglement and correlations

If N' or/and e^{-}are detected or interact, this may narrow their WP's and therefore the neutrino WP.

If e^{-}is detected during time interval $t_{e}<t_{N}$, the size of v WP will be determined by \dagger_{e}

If e^{-}interacts with particles of medium which have very short time between collisions $\dagger_{\text {coll }}$, then $\sigma_{x} \sim c \dagger_{\text {coll }}$

Similar to the EPR paradox

consider v emission and interactions of e^{-}as unique process; contributions to its amplitude from different interactions regions appear with random phases ξ_{k}-incoherent $A_{\text {tot }}=A_{k} e^{i \xi_{k}}$

Proparation conerecice

Observing propagation decoherence

$x-t$ space: separation of wave packets of mass states due to difference of group velocities
equivalent to integration over
the energy uncertainty

E
Suppression of interference \rightarrow damping of oscillations
Survival probability :

$$
P_{e e}=\bar{P}_{e e}+\frac{1}{2} D(E, L) \sin ^{2} 2 \theta \cos \phi
$$

Damping factor for Gaussian WP

$$
D(E, L)=\exp \left[-\frac{1}{2}\left(L / L_{\text {coh }}\right)^{2}\right]
$$

Coherence length

$$
L_{c o h}=\sigma_{x} \frac{E^{2}}{\Delta m^{2}}
$$

Information is not lost and can be restored at detection

C.A. Termes, 2104.05806 [hep-ph]

Bound on size of the WP

Expected damping effect

Daya Bay, RENO

KamLAND

Absence of decoherence (damping) effect means

$$
L \ll L_{\text {coh }} \Rightarrow \sigma_{x}>L \frac{\Delta m^{2}}{2 E^{2}}
$$

Analysis of data:

$$
\sigma_{x}>2.1 \times 10^{-11} \mathrm{~cm}(90 \% \text { C.L. })
$$

The bound corresponds to the energy resolution of detectors δ_{E}

$$
\sigma_{x} \sim 1 / \delta_{E}
$$

Other studies

Daya Bay: decoherence due to finite momentum spread σ_{p}

$$
\begin{gathered}
\sigma_{p} / p<0.23(95 \% \text { C.L. }) \\
\text { for } p=3 \mathrm{MeV}: \sigma_{x} \sim 1 / \sigma_{E}=2.8 \times 10^{-11} \mathrm{~cm}
\end{gathered}
$$

JUNO in future may set the limit

$$
\sigma_{p} / p<10^{-2}(95 \% \text { C.L. }) \rightarrow \sigma_{x}>2.3 \times 10^{-10} \mathrm{~cm}
$$

J. Wang et al. 2112.14450 [hepex]

Decoherence in oscillations active - eV scale sterile C.A.Arguelles et al, Damping effects in various experiments computed 2201.05108 [hep-ph] for $\sigma_{x}=2.1 \times 10^{-11} \mathrm{~cm}$ (as found in A de Gouvea et al).

Claims:

- decoherence allows to reconcile BEST result with reactor bounds;
- results of analysis should be presented in two forms: with and without decoherence

Propagation dechonerence and energy resolution

 integration over the energy resolution of setup E.Kh. Akhmedov and A.Y.S.- another sources of damping 2208.03736[hep-ph]
$R\left(E_{r}, E\right)$ energy resolution in experimental set-up (width δ_{E}):
- spectrum of produced neutrinos (line), or
- energy resolution of a detector
$f(E, \bar{E})$ - WP of produced neutrino in energy representation acts on oscillations, as R does, and can be attached to $R\left(E_{r}, E\right)$

Effective resolution function

$$
R_{e f f}\left(E_{r}, E\right)=\int d \bar{E} R\left(E_{r}, \bar{E}\right)|f(E, \bar{E})|^{2}
$$

For Gaussian f and $R, R_{\text {eff }}$ is also Gaussian with width

$$
\delta_{E}^{2}+\sigma_{E}^{2}
$$

The problem: to disentangle the two contributions

WP's of reactor neutrinos

Source: β-decays of fragments N of nuclear fission

$$
N \rightarrow N^{\prime}+e^{-}+\bar{v}
$$

N quickly thermalise \rightarrow in equilibrium with medium in the moment of decay \rightarrow the average velocity:

$$
v_{N} \sim\left[3 T / m_{N}\right]^{-1 / 2}
$$

If N^{\prime} and e^{-}are not detected or their interactions can be neglected, localization of v production process is given by localization of N.

$$
\sigma_{x} \sim v_{v} \dagger_{N} \sim X_{N} c / v_{N}
$$

\dagger_{N} - time between two collisions of N with other atoms

$$
t_{N} \sim\left[\sigma_{A A} n_{U} v_{N}\right]^{-1}
$$

$\sigma_{A A}$ geometric cross-section $\sigma_{A A} \sim \pi\left(2 r_{v d W}\right)^{2} \quad$ Van der Waals radius n_{U} - number density of Uranium

$$
\sigma_{x}=2.8 \times 10^{-3} \mathrm{~cm}
$$

Effect of accompanying particles

Duration of v production process is given by the shortest mean free time among particles involved

Electrons have the shortest

$$
\sigma_{t}=\dagger_{e}=X_{e} / v_{e}
$$

X_{e} is determined by ionization of uranium, $\sigma_{e U}$

$$
\sigma_{x}=2 \times 10^{-5} \mathrm{~cm}
$$

"short cut" estimation: can be considered as the upper bound

Consideration of $x-t$ localization of interactions of accompanying particles.

Chain of k processes of secondary interactions till equilibration (thermalization)

$$
\sigma_{\dagger} \sim \dagger_{N} / 2^{k}
$$

$$
\sigma_{x}=(5-10) \times 10^{-5} \mathrm{~cm}
$$

Implications

1. $\sigma_{x} / \sigma_{x}{ }^{\text {exp }}=10^{5}-10^{6} \quad \sigma_{x} \gg \sigma_{x}{ }^{\exp }$
2. Corresponding energy uncertainty $\sigma_{E} \sim 1 \mathrm{eV}$ while energy resolution $\delta_{E} \sim 10^{5} \mathrm{eV}$

To be sensitive to WP separation energy resolution function should be known with better that 10^{-5} accuracy
3. For Cr source: $\sigma_{x}=1.4 \times 10^{-4} \mathrm{~cm}$
4. Large Δm^{2} does not help since oscillatory pattern shows up at $L \sim I_{v}$

$$
\text { but } L_{\text {coh }} \sim I_{v} \sim 1 / \Delta m^{2} \rightarrow \Delta m^{2} \text { cancels in damping factor }
$$

5. If some additional damping is found, it is due to some new physics and not due to WP separation
6. Experiments with $L \sim L_{\text {coh }}$? Lower energies? Widening lines?

Commentrand andelices

Three points appear to undermine that WP separation is unobservable:

Causality violation
The statement is based on figures which do not correspond to our computations

Integration in non-orthogonal basis of entangled recoil

We are not making integration over characteristics of recoil

Nuclear interactions inside nucleus measure position of initial particle (nucleon)

WP are determined by absolute localization of parent particle in the source i.e. wrt other atoms

Comments

No problem with casuality

Electron interaction decides \rightarrow light cone should be constructed differently

Figs do not correspond to our estimations

In this setup $\dagger_{N^{\prime}} \gg \dagger_{N}$ recoil does not affect WP of neutrinos which is determined by \dagger_{N}

Matter vacuum and propacation

From micro to macro picture

From interactions with individual scatteres to effective potential (mean field approximation)
E.Kh. Akhmedov 2010.07847 [hep-ph]

Point-like scatterers, a coarse graining coordinate space averaging over macroscopic volumes with large number of particles
A. Y.S., Xun-jie Xu Summation of potentials produced by individual scatteres.

For short range interactions $r_{\text {WI }}$, localization of scatterers should be taken into account $X_{e} \gg r_{\text {WI }}$, e.g. localization of e in atom
e.g., G Fantini,
A.G. Rosso, F. Vissani 1802.05781
since $\lambda_{v} \sim 1 / p_{v} \ll X_{e}$
\rightarrow make sense to consider propagation of neutrino inside atom

Modeling with casfle wall profile

n

$V_{a} \quad V_{b} \quad$ Half-phases: $\phi_{a} \quad \phi_{b}$
$L_{a} L_{b} \quad$ Mixing angles: $\theta_{a} \quad \theta_{b}$
Oscillation probability

$$
\begin{aligned}
P= & {\left[1-I^{2} /\left(1-R^{2}\right)\right] \sin ^{2}(n \zeta) \quad \zeta=\operatorname{arcos} R \quad n \text { - number of periods } } \\
& I=I\left(\phi_{a}, \phi_{b}, \theta_{a}, \theta_{b}\right), R=R\left(\phi_{a}, \phi_{b}, \theta_{a}, \theta_{b}\right)
\end{aligned}
$$

For $\phi_{a} \phi_{b} \ll 1$ the probability can be reduced to

$$
\begin{aligned}
& P=\sin ^{2} 2 \theta_{m}(\bar{V}) \sin ^{2} \frac{1}{2} \phi(\bar{V}) \\
& \bar{V}=\frac{V_{a} L_{a}+V_{b} L_{b}}{L_{a}+L_{b}} \quad \text { - averaged potential }
\end{aligned}
$$

WP's and norradiadatic evolution

Partially ionized atoms as the electron density perturbations
Number density profile of electrons in atom ($\mathrm{O}, \mathrm{C}, \mathrm{He}$) is non adiabatic

```
M. Kusakabe
2109.11942 [hep-ph]
```

Interplay of non-adiabatic evolution and separation (relative shift) of the WP's leads to new effects: additional averaging of oscillations
Applications to Supernova neutrinos

No new effects without WP separation and adiabatic evolution
No new effects for very sharp (step-like) density profile

Evolution of WP's

WP's are formed at the production (at boundaries)

$$
\psi(\dagger x)=\int d p f(p) \phi_{p}(\dagger x) \quad \phi_{p}(\dagger x)-\text { plane waves }
$$

If there is no absorption or p-dependent interactions, $f(p)$ does no \dagger change in the process of evolution

Evolution equation id $\psi / d t-H \psi=0$, insert $\psi(\dagger x)$:

$$
\int d p f(p)\left[i d \phi_{p} / d t-H \phi_{p}\right]=0
$$

Superposition principle and linearity of evolution equation \rightarrow solve eq for ϕ_{p}, then integrate over p (which takes care about WP nature) No effects predicted in 2109.11942 [hep-ph]

In t-x space WP can change form in the course of evolution, but integrated over time result coincides with result in E-p rep.
$v v$-scattering $\rightarrow H=H\left(\phi_{p}\right)$-non-linear equation? ${ }^{2103.10149 \text { [hep-ph] }}$

Evolution matrix

$$
U\left(\dagger, t_{p}, v^{(p)}(t)\right)=U_{0}\left(t, t_{p}\right)+\varepsilon U_{1}\left(\dagger, t_{p}, v(p)(t)\right)
$$

Standard linear expansion non-linear evolution matrix parameter correction
Produced state $v^{(p)}(\dagger)=U\left(\dagger, t_{p}, v^{(p)}\right) v^{(p)}\left(\dagger_{p}\right)$

$$
v^{(p)}(t)=v^{(p, 0)}(t)+\varepsilon v^{(p, 1)}(t)
$$

Equation for correction $v^{(p, 1)}(\dagger)$ in coordinate representation:

$$
i d v^{(1)}(t) / d t=H 0 v^{(1)}(t)+G\left(t, x, v^{(0)}\right) \quad \text { inhomogeneous term }
$$

Weinberg 5D operator \rightarrow interaction with scalar \rightarrow state dependent term $\rightarrow G$

$$
\begin{aligned}
& P=\sin ^{2} 2 \theta\left(\sin ^{2} \frac{1}{2} \phi-\frac{\varepsilon^{\prime}}{4} \frac{m_{1}-m_{2}}{m_{1}+m_{2}} \sin \phi\right) \\
& \varepsilon^{\prime}=A \varepsilon\left(m_{1}+m_{2}\right)^{2} / v^{2} \quad A=81.5 \quad \text { Correction is very small }
\end{aligned}
$$

Schrodinger equation for single particle

$$
i d v(t, x) / d t=\left(H_{0}+\varepsilon \frac{q^{2}}{4 \pi} \int d^{4} x_{1}\left|v\left(t_{1}, x_{1}\right)\right|^{2} G_{r}\left(t x, t_{1} x_{1}\right)\right) v(t, x)
$$

G_{r} - retarded Green function for scalar ϕ
q - charge, Yukawa coupling constant of v and ϕ
$q=m_{v} / v$

1602.03191 [hep-ph]

Neutrino vacuum condensate due to gravity. Order parameter

$$
\left\langle\Phi_{\alpha \beta}\right\rangle=\left\langle v_{\alpha}{ }^{\top} C_{\gamma_{\beta}}\right\rangle \sim \Lambda_{G}=m e V-0.1 \mathrm{eV}
$$

Cosmological phase transition at $T \sim \Lambda_{G}$
Neutrinos get masses $\mathrm{m}_{\alpha \beta} \sim<\Phi_{\alpha \beta}>$
Flavor is fixed by weak (CC) interactions and charged leptons with definite mass generated by usual Higgs field

$$
m \sim U(\theta)^{\top}<\Phi>U(\theta)
$$

$\langle\Phi\rangle=\operatorname{diag}\left(\Phi_{11}, \Phi_{22}, \Phi_{33}\right), \lambda_{\text {mixing matrix }}$
$T<\Lambda_{G} \quad$ Relic neutrinos form bound states $\phi=\left(v_{\alpha}{ }^{\top} v_{\beta}\right)$ decay and annihilate into ϕ (neutrinoless Universe)

Symmetry of system $\mathrm{SU}(3) \times U(1)$ spontaneously broken by neutrino condensate - ϕ are goldstone bosons
ϕ get small masses due explicit symmetry breaking by WI via loops

Length scale of strings ~ inter-string separation

$$
\xi=10^{14} \mathrm{~m}\left(\lambda / \mathrm{a}_{G}\right)\left(\frac{\Lambda_{G}}{1 \mathrm{meV}}\right)^{7 / 2}
$$

(self-coupling of string field $\Phi /$ scale factor of phase transition)
Travelling around string winds VEV $\langle\Phi\rangle$ by the $\mathrm{SU}(3)$ transformation:

$$
\left\langle\Phi\left(\theta_{S}\right)\right\rangle=\omega\left(\theta_{\mathrm{W}}\right)^{\top}\langle\Phi\rangle \omega\left(\theta_{\mathrm{W}}\right)
$$

$\omega\left(\theta_{W}\right)$ path $-O(3)$ transformation with angles $\theta_{W}=\left(\theta_{w}{ }^{12}, \theta_{w}{ }^{13}, \theta_{w}{ }^{23}\right)$.
After the path ω lepton mixing changes as $U=U(\theta) \omega\left(\theta_{W}\right)$ over length $\xi, \theta_{w}=O(1)$

Solar system moves through the frozen string-DW background with $v=230 \mathrm{~km} / \mathrm{sec}$. For 6 years (operation of Daya Bay) $d=v t=4 \times 10^{13} \mathrm{~m}$ - comparable with expected ξ

S. FGe and H Murayama, 1904.02518 [hep-ph]. Ki-Yong Choi, Eung Jin Chun,
Elastic forward scattering of v on background scalars ϕ with fermionic χ mediator

Resonance: $s=m_{\chi}{ }^{2}$
for ϕ at rest the resonance v energy:

$$
E_{R}=\frac{m_{\gamma}{ }^{2}}{2 m_{\phi}}
$$

For small m_{ϕ} resonance at low, observable energies A.Y.S., V. Valera, 2106.13829 [hep-ph]

Jongkuk Kim, 1909.10478 [hep-ph] 2012.09474 [hep-ph]

Effective potential

Effective $\Delta \mathrm{m}^{2}$

$\Delta m_{e f f}^{2} \sim \frac{y^{2} n_{\phi}}{4 m_{\chi}}\left\{\begin{array}{cc}1, & E \gg E_{R} \\ \varepsilon \frac{E}{E_{R}}, & E \ll E_{R}\end{array}\right.$
$\Delta m_{\text {eff }}{ }^{2}=$ constant - checked down to 0.1 MeV
\rightarrow take $E_{R} \ll 0.1 \mathrm{MeV}$

E
For $E_{R}=0.01 \mathrm{MeV}$:
KATRIN, $\mathrm{E} \sim 1 \mathrm{eV}: m_{\text {eff }}<210^{-4} \mathrm{eV}$ - undetectable

COSMOLOGY

$$
\begin{aligned}
m_{e f f}^{2} \sim n_{\phi} \sim(1+z)^{3} \rightarrow \begin{array}{l}
\text { increased in the past } \\
\text { while VEV }=\text { const }
\end{array}
\end{aligned}
$$

Relic $v, E=10^{-4} \mathrm{eV}: \quad m_{\text {eff }}(0)<510^{-6} \mathrm{eV}: m_{\text {eff }}(z=1000) \sim 0.15 \mathrm{eV}$,
no problem

Bounds on parameters

Allowed values:

$$
\begin{aligned}
& m_{f}<10^{-3} \mathrm{eV} \\
& \mathrm{~m}_{\phi}<10^{-10} \mathrm{eV} \\
& y<10^{-9}
\end{aligned}
$$

Ki-Young Choi, Eung Jin Chun,
Jongkuk Kim, 2012.09474 [hep-ph]
Green band: $\Delta m_{e f f}{ }^{2}=\Delta m_{a+m}{ }^{2}$

Upper bounds on y from scattering of neutrinos from SN1987A on DM ϕ with zero C - asymmetry and two different masses of mediator f

Similar bound from Ly α (relic neutrinos).
the corresponding resonance energy $E_{R}=0.01 \mathrm{MeV}$

Cosmological bound is satisfied

Summary

Space-time localization diagrams visualize (uncover) the key aspects
Neutrino oscillations - the tool for explorations of properties of space and time, subtle aspects of QM fundamental symmetries (beyond measurements of neutrino parameters)

Effect of propagation decoherence (damping) is unobservable in the present reactor and source experiments. If some additional damping is found \rightarrow due to new physics
Evolution of v state and construction of WP in the momentum space commute \rightarrow propagation decoherence is boundary (for linear case) phenomenon (as well as production and detection decoherence)

Effects of complex structure of vacuum, neutrino condensates, Non-linear generalization of QM can affect NO

Important study: search for time, space and energy Dependences of oscillation parameters.

Landscape of studies 2021-2022

About 100 papers with "Neutrino oscillations" in titles

Topics:

Coherence,
Entanglement in neutrino oscillations
Collective neutrino oscillations
Micro vs. macro description
Quantumness, Tests of quantum mechanics
Oscillations in modified metric, gravity
Oscillations in gravitational waves background Mater, medium effects in presence of new interactions (long range forces, DM), Modification of QM, evolution equation Effects of Lorentz invariance violation, Equivalence principle violation
Parameter symmetries
All aspects, components, characteristics of oscillations are under investigation. They can be classified as...

