First Results in Data-MC comparison

S.Torelli - E.Baracchini - E. Di Marco

Comparison Between...

5801	400	50	Xray source Cu 8.04/8.91 keV - 24cm distance from beginning of window
5806	400	50	Xray source Rb 13.4/15 keV - 24cm distance from beginning of window
5813	400	50	Xray source Mo 17.4/19.6 keV - 24cm distance from beginning of window
5825	400	50	Xray source Ag 22.1/25 keV - 24cm distance from beginning of window
5832	400	50	Xray source Ba 32.1/36.6 keV - 24cm distance from beginning of window

Reconstructed with Autumn21 (Winter 2022)

and...

- Data digitized with the digitization code with saturation
- 500 tracks per energy

- Energies at:8, 15, 18, 24, 35 keV
- Reconstructed with Autumn21
- Diffusion uniform within
 5- 45 cm
- Same parameters of the data

- Variables compared:
 - Integral
 - Lenght
 - Width
 - Slimness

- Density (light/npixels)
- dEdx (light/lenght)
- TGaussMean
- TGaussSigma

- Cluster nhits
- Cluster size

First Strategy: Cut over lenght<400. Background subtraction. Normalization data-simulation. Comparison

Issue in background normalization

- Data and bakground are not in agree at very low energies; excess of events in source data:
 - Higher light production → higher probability of a fake cluster
 - Higher # of tracks → higher probability of a small piece of track cut out from the main track
- Thinking about how to solve it

Integral comparison

Problem of fake cluster clould be solved with an cut on the integral (e.g. > 1000)

Linearity and energy resolution

- Too much light in the simulation with respect to data
- Energy resolution can be improved with a further analysis (e.g. NonUniform binning, Bkg modeling)

Track lenght

- Copper contamination more present at higher energies
 - Since peaks are separated an energy selection could help in the analysis

Track width

Test taglio integral>1000

- Width increase with energy but less than length as expected
- Differences due to non uniform z in the data?

Slimness

- Copper contamination modifies the distribution shape
- With the normalization: less copper→more signal in slimness>1.5

Density

- Spoiler: Nhits Data-Sim in agreement.
- Excess of light in simulation compatible with higher density (not in a trivial way)

dE/dx

- Lenght in agreement in data and MC
- Excess of light→ Excess in specific ionization

Not constant: dx is 2D and rising Side of Bethe-Block

TGaussMean

TGaussSigma

Nhits

Size

Differente noise tra dati e simulazione?

Recap. and conclusions

- Data and MC comparison shows:
 - Agreement in:
 - Nhits
 - TGausMean

Diffusion is well simulated?

- Fine-tune needed in:
 - Lenght
 - Width
 - TGaussSigma
 - Size

Possible relation with a different pedestal in simulation?

Non uniform z distribution?

- To improve:
 - Linearity
 - EResolution (to be confermed)
 - Light density
 - Specific ionization

Connected with the saturation?

