How many colors does a quark come in?

- we learned how to calculate the R -value and to deduce the number of quark colors.

$$
R=\frac{N(\text { light quarks })}{\frac{1}{2} \cdot[N(\text { muons })+N(\text { taus })]}=N_{C} \cdot \frac{10}{9}
$$

How many colors does a quark come in?

- we learned how to calculate the R-value and to deduce the number of quark colors.

$$
R=\frac{N(\text { light quarks })}{\frac{1}{2} \cdot[N(\text { muons })+N(\text { taus })]}=N_{C} \cdot \frac{10}{9}
$$

$>$ To measure the number of colors, we have to count the number of different processes

- Therefore:
$>$ We want to learn how to distinguish the different processes from each other in the detector

Electron/Positron events

Muon/AntiMuon events

Tau/AntiTau events

Light
Quark/Antiquark events

- Decay into a large variety offinarstates

iquark

Belle II

Ereignis 1
$E=0.2$
$\searrow=0.56$

Wie viele Farben hat ein Quark?

Results

19 students, 50 events each: 950 events in total

$R=3.139 \pm 0.269$

Measured number of colors

$\mathbf{N}_{\text {color }}=2.825$
$\mathbf{N}_{\text {color }}-1 \sigma=2.583$
$\mathbf{N}_{\text {color }}+1 \sigma=\mathbf{3 . 0 6 7}$

