Neutron star radius-to-mass ratio from accretion disc occultation

Riccardo La Placa

With Luigi Stella and many others

Neutron stars and their EoS

[Watts et al., 2016]

- $\mathrm{M} \sim 1-2 \mathrm{M}_{\text {Sun }}$
- $\mathrm{R} \sim 15 \mathrm{~km} \sim 7 \mathrm{GM} / \mathrm{c}^{2}$
- $\mathrm{B} \sim 10^{12}-10^{15} \mathrm{G}$
- $\mathrm{P}_{\text {rot }} \sim 10^{-3}-30 \mathrm{~s}$
- $\varrho_{\text {core }} \gtrsim 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$

Outer crust: nuclei $+\mathrm{e}^{-}$ Inner crust: nuclei $+\mathrm{n}+\mathrm{e}^{-}$ Core: $\mathrm{n}+\mathrm{p}+\mathrm{p}+\mathrm{e}^{-}$(maybe)

Neutron stars and their EoS

We can derive tight constraints on the equation of state (EoS) through observations of NSs by measuring M and R with precision better than $\sim 5 \%$ (currently $\sim 9 \%$)

Iron K-a lines in accretion disks

[Hynes, 2010]

[Chiang et al., 2016]

Iron K-a lines in accretion disks

Gravitational light bending

[adapted from Beckwith \& Done, 2004]

Occultation

To the observer at infinity

4U 1636-53: a good candidate

Inclination consistently reported to be high
Inner disc radius close to/reaching the ISCO
X-ray flux usually around 120 mCrab
Broad iron Ka line, with $\sim 0.19 \mathrm{keV}$ EW
[Pandel et al, 2008; Cackett et al, 2010; Sanna et al, 2013; Lyu et al, 2014; Ludlam et al, 2017]

Energy (keV)

4U 1636-53: a good candidate

Inclination consistently reported to be high
Inner disc radius close to/reaching the ISCO
X-ray flux usually around 120 mCrab
Broad iron Ka line, with $\sim 0.19 \mathrm{keV}$ EW
[Pandel et al, 2008; Cackett et al, 2010; Sanna et al, 2013; Lyu et al, 2014; Ludlam et al, 2017]

Yet unfortunately we lack the necessary S / N ratio

[Credits to: https://www.isdc.unige.ch/extp/]
eXTP: coming to your favourite orbit in 20252028

[Credits to: https://www.isdc.unige.ch/extp/]
data and folded model

data and folded model

Table 2
Best-fit $r_{\text {in }}$ and $R_{\text {NS }}$ Parameters for the Simulations in which $r_{\text {in }}=R_{\text {NS }}$

i	$R_{\text {NS }}=6 r_{g}$		$R_{\text {NS }}=7 r_{g}$		$R_{\text {NS }}=8 r_{g}$	
	$r_{\text {in }}^{\text {bf }}$	$R_{\text {NS }}^{\text {bf }}$	$r_{\text {in }}^{\text {bf }}$	$R_{\text {NS }}^{\text {bf }}$	$r_{\text {in }}^{\text {bf }}$	$R_{\text {NS }}^{\text {bf }}$
55°	\ldots	\ldots	$8.00_{-0.02}^{+0.01}$	$7.68{ }_{-0.21}^{+0.32}$
60°	$6.00_{-6.00}^{+0.01}$	$5.90_{-0.01}^{+0.11}$	$7.01_{-0.02}^{+0.01}$	$6.85{ }_{-0.19}^{+0.16}$	$8.00_{-0.02}^{+0.01}$	$8.00_{-0.28}^{+0.01}$
65°	$6.01_{-0.01}^{+0.01}$	$6.00_{-0.23}^{+0.01}$	$7.00_{-0.01}^{+0.01}$	$7.00_{-0.15}^{+0.01}$	$8.01_{-0.01}^{+0.02}$	$7.99_{-0.30}^{+0.03}$
70°	$6.00_{-0.00}^{+0.02}$	$5.96{ }_{-0.22}^{+0.04}$	$7.00_{-0.01}^{+0.01}$	$7.00_{-0.08}^{+0.02}$	$8.00_{-0.00}^{+0.02}$	$7.88{ }_{-0.19}^{+0.17}$
75°	$6.00_{-6.00}^{+0.03}$	$5.99_{-0.13}^{+0.17}$	$7.01{ }_{-0.03}^{+0.01}$	$6.86{ }_{-0.15}^{+0.10}$	$8.00_{-0.04}^{+0.01}$	$8.00_{-0.10}^{+0.01}$
80°	$6.00_{-6.00}^{+0.01}$	$5.94{ }_{-0.07}^{+0.06}$	$6.99_{-0.02}^{+0.03}$	$6.98{ }_{-0.16}^{+0.16}$	$8.00_{-0.00}^{+0.03}$	$7.99_{-0.08}^{+0.02}$

Table 3
Best-fit $r_{\text {in }}$ and $R_{\text {NS }}$ Parameters for the Simulations in which $r_{\text {in }}=R_{\text {NS }}+1 r_{g}$

i	$R_{\text {NS }}=6 r_{g}$		$R_{\text {NS }}=7 r_{g}$		$R_{\text {NS }}=8 r_{g}$	
	$r_{\text {in }}^{\text {bf }}$	$R_{\text {NS }}^{\text {bf }}$	$r_{\text {in }}^{\text {bf }}$	$R_{\text {NS }}^{\text {bf }}$	$r_{\text {in }}^{\text {bf }}$	$R_{\text {NS }}^{\text {bf }}$
60°	\cdots	\ldots	.	\ldots	$9.00_{-0.03}^{+0.02}$	$8.13_{-0.34}^{+0.23}$
65°	$8.00_{-0.03}^{+0.02}$	$7.07{ }_{-7.07}^{+0.31}$	$8.955_{-0.01}^{+0.01}$	$8.15{ }_{-0.40}^{+0.24}$
70°	$7.00_{-0.01}^{+0.01}$	$5.99_{-5.99}^{+0.82}$	$8.00_{-0.01}^{+0.02}$	$7.16_{-0.20}^{+0.18}$	$8.97{ }_{-0.01}^{+0.03}$	$7.82_{-0.23}^{+0.27}$
75°	$6.99_{-0.01}^{+0.02}$	$5.99_{-5.99}^{+0.36}$	$8.05{ }_{-0.03}^{+0.03}$	$7.122_{-0.22}^{+0.22}$	$8.911_{-0.04}^{+0.04}$	$7.87{ }_{-0.32}^{+0.28}$
80°	$7.00_{-0.01}^{+0.01}$	$6.05{ }_{-0.15}^{+0.20}$	$7.97{ }_{-0.01}^{+0.01}$	$7.06{ }_{-0.16}^{+0.14}$	$8.95{ }_{-0.02}^{+0.02}$	$8.07{ }_{-0.18}^{+0.18}$

In all cases the 90% error bars on the NS radius are below 5% of the best-fit value (in most of them even below 3.5%), providing the precision required to constrain the EoS

[adapted from Watts et al., 2019]

Summary

- We have developed a new subroutine to fit relativistically broadened lines from accretion disks accounting for the occultation by a central body: this occultation imprints a signature on the line profiles which should be visible for high enough inclinations and close disks.
- Current instrumentation simply does not provide the necessary signal-to-noise ratio to detect occultation features. However, with near-future telescopes measuring the $\mathrm{R} / \mathrm{r}_{\mathrm{g}}$ ratio should be possible within $\sim 1 \div 5 \%$ precision, which is the one required to put tight constraints on the EoS of NS matter together with other X-ray techniques: this opens a new window in the physics of ultradense, cold matter.
- Although we assume the metric to be described by the Schwarzschild case and the star to be spherical, the accuracy and precision of the model still holds for reasonably rotating, oblate NS.

