

International Workshop IPAIA2017 Ion Propulsion and Accelerator Industrial Applications

CNR Research Area Bari, March 1-3, 2017

CIRA IMP-EP project: Development and Validation of a 1D Model for Hollow Cathode Analysis and Design

Panelli Mario¹ Smoraldi Antonio² Battista Francesco³

Italian Aerospace Research Centre, Via Maiorise, Capua (CE) Italy

¹Researcher, Methodologies and Technologies for Space Propulsion, m.panelli@cira.it. ²Researcher, Propulsion Test Facilities, a.smoraldi@cira.it. ³Head of Methodologies and Technologies for Space Propulsion, f.battista@cira.it.

- Background
- CIRA IMP-EP program: overview
- CIRHET-250 Experimental Hall Thruster
- Orifice Hollow Cathode (OHC) Preliminary Design Tool
 - Description
 - Validation
- Conclusions
- Future Development

Background

CIRA, the **Italian Aerospace Research Center**, has been established to create technology know-how in order to support the Italian Aerospace Companies and contribute to the European aerospace development activities in cooperation with

- National and International Institutions
- Universities
- Research Centers
- Companies

One of the main missions is to develop **strategic competences** and **know-how** in the field of **aerospace propulsion**.

At this moment, CIRA is involved in several national and international projects concerning **solid**, **liquid and electric propulsion** and intends to improve the **testing capabilities**, besides the theoretical and simulation aspects.

CIRA program on space electric propulsion^[1] is divided in three main lines:

- The low power Hall Effect Thrusters (HET) will be tested in MSVC in order to set-up advanced diagnostic.
- The low-power HET, CIRHET-250, is in Preliminary Design Review Phase, and it has been designed according to HET scaling methodology*.
- The design of CIRHET-250 has been preliminary verified by magnetic field, thermal and CFD analyses.

CIRHET-250 ^[2]				
Nominal Discharge Power	250 W			
Nominal Thrust	11 mN			
Specific Impulse	1250 s			
Propellant	Xenon			
Cathode Location	External			
Thruster Mass	0.7 kg			

CIRHET-250 Mockup of the first concept design

A design tool for the cathode is necessary to develop the low power HET. In order to understand physical behavior and predict main design parameters, a simplified model has been developed.

A complete model of a thermionic hollow cathode requires:

Actual version of Plasma models (Emitter insert region, Orifice region, Orifice-Keeper Region) the Tool Thermal models Cathode Tube Low Radiation Shields Work-Function Cathode Heater Insert Orifice Plate Keeper **Plasma Model Assumptions** Properties averaged in each control volume 3 Steady state condition Quasi-neutral plasma, mixture of three perfect gases (thermalized electrons. singly-charged positive ions, and neutrals) 1. Insert Plasma lons and neutrals at the same temperature Orifice Plasma Cathode-to-Keeper Plasma of the cathode wall.

*OHC- schematic and control volumes

OHC Preliminary Design Tool - Description Plasma Model

OHC Preliminary Design Tool - Description MATLAB[®] GUI- Graphic User Interface

CODE INPUT:

- Geometry
- Operational

 (I_d, m_{dot})

- Propellant Properties
- Insert Properties
 (Richardson-Dushman,
 work function)
- Starting plasma properties values
- Wall Temperatures (emitter, orifice)

CODE OUTPUT:

- Emitter Region Plasma Properties
- Orifice Region Plasma
 Properties

NEXT STEPS:

- - Updating emission length and wall temperatures (thermal model)
 - Orifice tip-keeper Region Plasma Properties Model

Xenon Cathodes

Reference	NSTAR ^[3]	<u>Wilbur-</u> 1984 ^[4]	Domonkos- 1999 ^[5]	Albertoni- 2013 ^[6]	
Validation Plasma Region Available data	Orifice Num.	Insert Exp./Num.	Orifice + Insert Exp./Num.	Orifice + Insert Num.	
Incort internal diameter [mm]	2.0	2.0	1 2 2	2	
	5.0	5.0	1.22	5	
Orifice length [mm]	0.75	1.22	0.71	0.36	
Orifice Diameter [mm]	0.28	0.76	0.76 0.15		
Mass flow rate, [mg/s]	0.36	0.127	[0.11 ÷ 0.23]	[0.3 ÷ 2]	
Discharge Current [A]	3.26	[1.24 ÷ 4.26]	[0.75 ÷ 1.25]	[1÷3]	
Insert Material	Ва	Ta (dip-coated)	W (Doped)	LaB ₆	
Richardson-Dushman cost. [10 ⁴ A/m ² ·K ²]	1.5	120	60	29	
Work function [eV]	1.56	2.25	2.3	2.66	

OHC Preliminary Design Tool - Validation Orifice Plasma Model: <u>NSTAR cathode</u>

ORIFICE	0-D model	0-D model	0-D model	0-D model	0-D model	1-D model		2-D model			
	(CIRA calculation)	(Mizrahi ^[7])	(Mandell and Katz ^[8])	(Korkmaz and Celik ^[9])	(Albertoni et al. ^[6])		(Katz et al. ^[10])			(Mikellides and Katz ^[11])	
Plasma parameter	Average	Average	Average	Average	Average	Orifice inlet	Maximum reached value	Orifice outlet	Orifice inlet	Maximum reached value	Orifice outlet
n ₀ (10 ²³ m ⁻³)	0.15	1.1	0.4	0.6	0.2	2.8	2.8	0.6	0.65	0.65	0.1
n _e (10 ²² m ⁻³)	0.77	2.7	1	0.7	0.7	2.8	6	1.8	2	2.2	0.5
T _e (eV)	2.45	1.6	2.2	2.4	2.7	1.2	1.8	1.8	2	2.2	2.2
n_/(n_+n_)	0.34	0.2	0.18	0.1	0.24	0.09	0.24	0.23	0.23	0.5	0.33

- Electron temperature and density close to Albertoni^[6] and Korkmaz^[9] computations by an error less than 10%; neutral density is underestimated.
- Higher electron temperature along with lower plasma and neutral densities with respect to the predictions of the 0-D model by Mizrahi^[7], and the 0-D model by Mandell and Katz^[8] (this two models include the energy loss due to excitation events in the plasma energy balance, neglected in the present study).
- Better accordance with the values predicted by the 2-D model of Mikellides and Katz^[11] at the orifice outlet.

OHC Preliminary Design Tool - Validation Insert Plasma Model: <u>Wilbur cathode</u>

Model Parameter	Code Input	Code Output
Wilbur	T _e	L _e , T _s V _p , n _e
CIRA	L _e , T _s	T _e V _p , n _e

Experimental and Numeric Data Wilbur^[4]

- Trends are well predicted (particularly those of plasma potential)
- With respect to Exp. Data: Overestimation of electron density; underestimation of Plasma potential
- Average wall temperature level in line with respect to Exp. Data and close to numerical data
- Emission Length increases with current and match the numeric data very well (almost whitin exp. Data)

OHC Preliminary Design Tool - Validation Insert Plasma Model: <u>Domonkos cathode</u>

- Trends well predicted
- Calculations close to experimental data (1.3mm distance to orifice @ 0.75A) except for electron density

OHC Preliminary Design Tool - Validation Insert and Orifice Plasma Model: <u>Domonkos cathode</u>

- Trends are well predicted
- Orifice electron temperature changes with current (trend not detected by Domonkos)
- Slight overestimation of electron number densities in insert and orifice regions

OHC Preliminary Design Tool - Validation Insert and Orifice Plasma Model: <u>Albertoni cathode</u>

- Trends well predicted for every case
- Insert region: Electron number density overlapped to Albertoni^[6] calculation;
- Orifice region: Electron number density close to Korkmaz^[9] data (except for 0.3mg/s test case);

CONCLUSIONS

- ✓ CIRA is expanding its testing capabilities with two new facilities for Electric Propulsion: MSVC (<5kW, by 2018) and LSVC (>5kW, by 2020)
- ✓ CIRA has started, from 2015, the acquisition of basic research competences and engineering design skills on EP devices
- ✓ A reduced-order numerical model describing the insert's and orifice's plasmas in an orificed hollow cathode has been developed as a quick tool for the design of thermionic cathodes. In this preliminary implementation walls' temperatures and emission length are imposed.
- ✓ The results of the validation tests have been shown. They are in good agreement with both theoretical and experimental trends found in the literature.

FUTURE DEVELOPMENTS

- Dedicated Thermal model implementation: evaluation of the heat transfer mechanisms and the related temperature gradients along the cathode
- Modelling of plasma in the near tip cathode region
- Emission length updating
- > Preliminary design of a specific cathode for the developed thruster (CIRHET-250)
- Experimental test campaign: validation of the tool (scheduled by the first half of 2018)

[1] Invigorito M. et al., "CIRA Roadmap for the Development of Electric Propulsion Test Facilities", SP2016_3125134

[2] Andrenucci M., Battista F. and Piliero P., "Hall Thruster Scaling Methodology", IEPC-2005-187

[3] Goebel/Katz, "Foundamental of electric Propulsion" /Jet Propulsion Laboratory California Institute of Technology JPL Space Science And Technology Series / 30 July (2008)

[4] Wilbur, "Advanced Ion Thruster Research Annual Report, I" NASA CR-168340 (1984)

[5] Domonkos, M. T., "Evaluation of Low-Current Orificed Hollow Cathodes", PhD dissertation (1999).

[6] Albertoni, R. et al., "A Reduced-Order Model for Thermionic Hollow Cathodes", IEEE Transactions On Plasma Science, vol. 41, no. 7, July 2013.

[7] J. Mizrahi, V. Vekselman, V. Gurovich, and Y.E. Krasik, Journal of Propulsion and Power 28, 1134 (2012).

[8] Mandell, M., and Katz, I., "Theory of Hollow Cathode Operation in Spot and Plume Modes," AIAA Paper 1994-3134, Oct. 1994.

[9] O. Korkmaz and M. Celik2, "Global Numerical Model for the Assessment of the Effect of Geometry and Operation Conditions on Insert and Orifice Region Plasmas of a Thermionic Hollow Cathode Electron Source", Contrib. Plasma Phys. 54, No. 10, 838 – 850 (2014).

[10] Katz, I., Anderson, J. R., Polk, J. E., and Brophy, J. R., "One-Dimensional Hollow Cathode Model," Journal of Propulsion and Power, Vol. 19, No. 4, July–Aug. 2003, pp. 595–600.

[11] Mikellides, I., and Katz, I., "Wear Mechanisms in Electron Sources for Ion Propulsion, 1: Neutralizer Hollow Cathode," Journal of Propulsion and Power, Vol. 24, No. 4, July–Aug. 2008, pp. 855–865

Thanks for your attention

Panelli Mario, m.panelli@cira.it. Smoraldi Antonio, a.smoraldi@cira.it Battista Francesco, f.battista@cira.it