The Critical O(N) CFT

Johan Henriksson Università di Pisa & INFN Pisa

Seminar at INFN Genova 24 March 2022

"The critical O(N) CFT: Methods and conformal data" [2201.09520]

Johan Henriksson

The Critical O(N) CFT

Seminar at INFN Genova 24 March 2022

Why the O(N) CFT?

ε -expansion 50 years!

/Submitted on 24 Jan 2022

The critical O(N) CFT: Methods and conformal data

Johan Henriksson

The orbital Q(M) GT is spacetime demonsors 2 < 4 < 4 now of the most important summaries of a conformal sets theory, with the large GT and N = 1.2 $\leq 2 < 4$, and a mole special set summaries point angle and theory of the strength of th

Comments: 87+13 pages, many tables, one ancillary data file. Comments are welcome Subjects. High Energy Physics. Theory (hep-th). Statistical Mechanics (cond-mat stat-mech) Cite as: any 22210 105021 (hep-th) (or any/w2201.00520 hep-th)

Submission history

From: Johan Henriksson [view email] [v1 Mon, 24 Jan 2022 08:28:42 UTC (310 KB)

- Conformal invariance
- Simple formulation: $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \frac{\lambda}{24} \phi^4$
- Experimental applications in d = 3
- Weakly coupled in $d = 4 \varepsilon$ and at large N
- Exact results in d = 2
- Testing ground for CFT methods "bootstrap"
- A lot of data available

1 The O(N) CFT: Overview

1 The O(N) CFT: Overview

- 2 Expansion limits
- 3 Spectrum continuity

The RG perspective

Universality – many UV systems can flow to the same IR behaviour lsing universality class (N = 1)

$$H = -J \sum_{\langle I, J \rangle} \sigma_I \sigma_J - h \sum_I \sigma_I.$$
⁽¹⁾

For h = 0 and fine-tuned βJ , $(1) \rightarrow \text{Ising CFT} (d > 1)$

$$\mathcal{L}_{\rm UV} = \frac{1}{2} (\partial \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{24} \phi^4$$
 (2)

For fine-tuned m^2 , (2) \rightarrow Ising CFT

Experimental realisation – 2nd order phase transitions

- N = 1: Ising CFT
 - Liquid-vapour transitions
 - Binary fluid mixtures
 - Uniaxial magnets
- N = 2: XY CFT
 - XY magnets
 - Helium superfluid transition " λ -line"
- N = 3: Heisenberg CFT
 - Isotropic magnets
- $N \rightarrow 0$: Self-avoiding random walks
 - Dilute polymers
- $N \rightarrow -2$: Loop-erased random walks

Also: Quantum-critical systems at zero temperture: (2 + 1)d

Experimental data – focus: Ising (N = 1)

Critical exponents: Note: $\phi \leftrightarrow \sigma \leftrightarrow \varphi$, $\phi^2 \leftrightarrow \epsilon \leftrightarrow \varphi_5^2$ $\eta : \langle \phi(x)\phi(0) \rangle \Big|_{T=T_c} \propto \frac{1}{|x|^{2+\eta}} \qquad \Delta_{\phi} = \frac{d-2}{2} + \frac{1}{2}\eta$ $\nu : \text{ corr. length } \xi \propto |T - T_c|^{\nu} \qquad \Delta_{\phi^2} = d - \frac{1}{\mu}$

	η	ν	
Liquid-vapour transition	0.042(6) (CO ₂)	0.62(3) (D ₂ O)	
Binary liquid mixtures	0.041(5)	0.632(2)	
Uniaxial magnet FeF ₂		0.64(1)	
Quantum phase transition		0.62(4)	
ε -expansion $O(\varepsilon^7)$ resummation	0.03653(65)	0.62977(22)	
High temperature expansion	0.03639(15)	0.63012(16)	
MC simulations	0.036284(40)	0.62998(5)	
Conformal bootstrap	0.0362978(20)	0.629971(4)	

The CFT perspective

O(N) model at criticality conjectured to be conformally invariant

- Distinguished set of operators: conformal primaries \mathcal{O} : $[\mathcal{K}_{\mu}, \mathcal{O}(0)] = 0$
- Scaling dimension $[D, \mathcal{O}(0)] = i\Delta_{\mathcal{O}}\mathcal{O}(0)$. $\langle \mathcal{O}_i(x)\mathcal{O}_j(0)\rangle = |x|^{-2\Delta_{\mathcal{O}_i}}\delta_{ij}$
- OPE coefficients λ_{ijk} : $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \lambda_{ijk}|x_{12}|^{\Delta_k \Delta_i \Delta_j} \dots$

CFT-data = spectrum of Δ_i + OPE coefficients Determines all (flat-space) observables

- Critical exponents $\eta = 2\Delta_{\phi} (d-2)$, $\nu = \frac{1}{d-\Delta_{\phi^2}}$, $\omega = \Delta_{\phi^4} d$.
- *n*-point functions via OPE $\mathcal{O}_1 \times \mathcal{O}_2 = \sum_k \lambda_{12k} \mathcal{O}_k$ *E.g.* 4-pt function

$$\langle \mathcal{OOOO} \rangle = \frac{1}{x_{12}^{2\Delta_{\mathcal{O}}} x_{34}^{2\Delta_{\mathcal{O}}}} \sum_{\mathcal{O}'} \lambda_{\mathcal{OOO'}}^2 G_{\Delta_{\mathcal{O}'}, \ell_{\mathcal{O}'}}(u, v), \quad u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, v = \frac{x_{14}^2 x_{22}^2}{x_{13}^2 x_{24}^2}$$

• Conserved currents J^{μ} , $T^{\mu\nu}$: C_J , C_T . e.g. $\lambda^2_{OOT} = \frac{d^2 \Delta^2_O}{4(d-1)^2 C_T}$

A two-parameter family of CFTs

Conjecture: For any 2 < d < 4 and 1 \leq N < ∞ , an interacting CFT

"Definition": "The unique gapless IR fixed-point of the theory of N scalars φ^i perturbed by $\lambda(\varphi^2)^2$ and tuning $m^2\varphi^2$ "

Note: Not unitary for non-integer *N*, *d* [Hogervorst, Rychkov, Van Rees 2015]

The O(N) CFT: Overview

- 2 Expansion limits
- 3 Spectrum continuity

The ε -expansion

Bare action,
$$d = 4 - \varepsilon$$
 $\mathcal{L}_b = \frac{1}{2} (\partial^{\mu} \phi_b)^2 + \frac{1}{2} m_b^2 \phi_b^2 + \frac{\lambda_b}{24} \phi_b^4$
Let $\phi_b = \sqrt{Z} \phi$, $m_b^2 = Z_{m^2}/Zm^2$, $g = Z_g/Z^2 \mu^{-\varepsilon} \lambda_b$.
 $\Delta_{\phi} = \frac{d-2}{2} + \gamma_{\phi}(g^*)$, $\Delta_{\phi^2} = d - 2 + \gamma_{m^2}(g^*)$, $\Delta_{\phi^4} = d + \frac{\partial \beta}{\partial g}(g^*)$
with $\gamma_{\phi} = \frac{\partial}{\partial \ln \mu} \ln \sqrt{Z} \Big|_{m_b^2, \lambda_b}$, $\gamma_{m^2} = \frac{\partial \ln m^2}{\partial \ln \mu} \Big|_{m_b^2, \lambda_b}$, $\beta(g) = \frac{\partial g}{\partial \ln \mu} \Big|_{m_b^2, \lambda_b}$.
Leading-order computation:
 $\sum Z_{m^2} = 1 + \frac{g}{(4\pi)^2} \frac{1}{\varepsilon} + \dots$, $Z = 1 + O(g^2)$
 $\sum Z_g = 1 + \frac{g}{(4\pi)^2} \frac{3}{\varepsilon} + \dots$, $\beta(g) = -\varepsilon g + 3 \frac{g^2}{(4\pi)^2}$
So at $\beta(g^*) = 0$, $g^* = (4\pi)^2 \varepsilon/3 + \dots$,
 $\Delta_{\phi} = 1 - \frac{\varepsilon}{2} + O(\varepsilon^2)$, $\Delta_{\phi^2} = 2 - \varepsilon + \frac{\varepsilon}{3} + O(\varepsilon^2)$, $\Delta_{\phi^4} = 4 - \varepsilon + \varepsilon + O(\varepsilon^2)$

Johan Henriksson

The ε -expansion – continued

Higher-order results

- ε⁴: 1970's [Brezin, Guillou, Zinn-Justin, Nickel; Vladimirov, Kazakov, Tarasov; etc.]
- ε^5 : 1990's [Kleinert, Schulte-Frohlinde; Chetyrkin, Larin, Neu; etc.]
- $\varepsilon^6 \varepsilon^7$: 2010's [Panzer; Batkovich, Chetyrkin, Kompaniets; Schnetz]
- ϵ^8 for Δ_ϕ [Schnetz 2021]

$$\begin{aligned} \Delta_{\phi^2} &= 2 - \varepsilon + \frac{1}{3}\varepsilon + \frac{19}{162}\varepsilon^2 + \left(-\frac{4}{27}\zeta_3 + \dots\right)\varepsilon^3 + \dots \\ &+ \left(\frac{244}{243}\zeta_{5,3} + \frac{736}{729}\zeta_3\zeta_5 + \dots\right)\varepsilon^6 + \left(-\frac{8}{2187}P_{7,11} + \dots\right)\varepsilon^7 + O(\varepsilon^8) \end{aligned}$$

More complicated composite operators computed by diagrams with insertions, and unmixing degenerate operators.

Johan Henriksson

The Critical O(N) CFT

Large N expansion

[Ma; Vasiliev, Pismak, Honkonen; Derkachov, Manashov; Gracey; etc.]

At large N for any 2 < d < 4, the O(N) CFT is described by a theory with fields φ^i and $\sigma \leftarrow \varphi_S^2 = \varphi^i \varphi^i$:

$$\Delta_{\varphi} = \frac{d-2}{2} + \frac{\gamma_{\varphi}^{(1)}}{N} + \dots, \quad \Delta_{\sigma} = 2 + \frac{\gamma_{\sigma}^{(1)}}{N} + \dots$$

Note $\Delta_{\varphi_S^2} = 2 - \varepsilon + \frac{N+2}{N+8}\varepsilon + \ldots = 2 + O(N^{-1})$ Large N action

$$\mathcal{L} = \frac{1}{2} (\partial \varphi)^2 + \frac{1}{2\sqrt{N}} \varphi^2 \sigma - \frac{3}{2} \frac{\sigma^2}{\lambda N}$$

Integrating out σ gives $\lambda(\varphi^2)^2/24$

 σ propagator dynamically generated

$$G_{\sigma}(p) = \cdots + \frac{N}{2} \cdots + \frac{N^2}{4} \cdots \cdots + \cdots,$$

Johan Henriksson

The Critical O(N) CFT

 \sim

3d *O*(*N*) CFT

Methods to estimate critical exponents and other CFT-data

- Monte Carlo simulations
- Resummation techniques
- Fixed-dimension, high-temperature expansions
- Non-perturbative/functional RG
- Numerical conformal bootstrap

Conformal bootstrap: consistency of OPE + unitarity: [Rattazzi *et al* 2008; review Poland *et al* 2018]

$$\mathcal{G}(u,v) = \sum_{\mathcal{O}'} \lambda_{\mathcal{O}\mathcal{O}\mathcal{O}'}^2 \mathcal{G}_{\Delta_{\mathcal{O}'},\ell_{\mathcal{O}'}}(u,v) = \left(\frac{u}{v}\right)^{\Delta_{\mathcal{O}}} \mathcal{G}(v,u) \quad \rangle = \langle z \rangle$$

- Correlators of φ , φ_5^2 , $\varphi_7^2 = \varphi^{\{i}\varphi^{j\}} + \text{gap assumptions} \rightarrow \text{small unitary islands [Kos$ *et al*2015; Chester*et al*2019; 2020]
- Extremal functional method [Poland, Simmons-Duffin 2010; El-Showk *et al* 2012]: estimate of low-lying spectrum

Johan Henriksson

3d Ising spectrum

Extremal functional method + sampling in the 3d Ising island

[Simmons-Duffin 2016]

Johan Henriksson

The O(N) CFT: Overview

- 2 Expansion limits
- Spectrum continuity

4 Outlook

Spectrum continuity [Hogervorst, Rychkov, Van Rees 2015]

Strong spectrum continuity: All conformal data (scaling dimensions, OPE coefficients) depend continuously on d and N. "Analytic" in d and N

Non-perturbative definition: In each representation of Lorentz $\times O(N)$, a list of operators with increasing scaling dimension.

Issues

- Representation theory (bonus slide)
- Non-unitarity [Hogervorst, Rychkov, Van Rees 2015]

One-loop dilatation operator

Order ε anomalous dimensions from conformal perturbation theory

$$-i[D, \mathcal{O}_i] = \Delta^{(0)}\mathcal{O}_i + \Gamma_{ij} \varepsilon \mathcal{O}_j + O(\varepsilon^2), \qquad \Gamma_{ij} \propto \lambda_{\mathcal{O}_i \mathcal{O}_j \phi^4} \big|_{\mathsf{free}}$$

Systematic method [Kehrein, Wegner 1992; 1994; Hogervorst, Rychkov, Van Rees 2015]

Result in the scalar \mathbb{Z}_2 -even sector

Johan Henriksson

Seminar at INFN Genova 24 March 2022

Conformal bootstrap at intermediate *d* [El-Showk *et al* 2013; Cappelli *et al* 2018]

Work in progress [JH, Kousvos, Reehorst]: EFM at "most allowed point" using the "navigator" [Reehorst *et al* 2021]

Figure with preliminary data omitted

$$\begin{array}{c} \Box^2 \phi^6 & [10 - 3\varepsilon] + \frac{11}{3}\varepsilon + \dots \\ \Box^3 \phi^4 & [10 - 2\varepsilon] + \frac{1}{3}\varepsilon + \dots \\ \phi^8 & [8 - 4\varepsilon] + \frac{28}{3}\varepsilon + \dots \\ \Box^2 \phi^4 & [8 - 2\varepsilon] + \frac{10}{9}\varepsilon + \dots \\ \phi^6 & [6 - 3\varepsilon] + 5\varepsilon + \dots \\ \phi^4 & [4 - 2\varepsilon] + 2\varepsilon + \dots \\ \phi^2 & [2 - \varepsilon] + \frac{1}{3}\varepsilon + \dots \end{array}$$

 $[10 - 5c] \perp 15c \perp$

 $\overline{\phi^{10}}$

N = 2, *N* = 3 [Sirois 2022]

Testing spectrum continuity with bootstrap: level repulsion

General expectation [von Neumann, Wigner 1929]: energy levels do not cross

Conformal field theory [Korchemsky 2015] ($\mathcal{N} = 4$ SYM, other examples)

PRELIMINARY [JH, Kousvos, Reehorst: Work in progress]

Figure with preliminary data omitted

The O(N) CFT: Overview

- 2 Expansion limits
- 3 Spectrum continuity

Outlook

Critical O(N) CFT as a prototype example of a CFT in d > 2Work in progress: *Mixed correlators from large spin perturbation theory* [Bertucci, JH, McPeak] $\langle \varphi \varphi \varphi \varphi \rangle$, $\langle \varphi \varphi \varphi_S^2 \varphi_S^2 \rangle$, $\langle \varphi_S^2 \varphi_S^2 \varphi_S^2 \varphi_S^2 \rangle$, ... Open questions

- Further perturbative data:
 - Low-lying operators at large N: $(\partial \varphi)^4$, $\Delta = 2d + ?? / N$
 - Other parameters: $\langle JJT \rangle = C_J \sqrt{C_T} (\mathbf{K}_1 + \gamma \mathbf{K}_2)$
- Bootstrap of larger systems, and including spinning externals
- Are there exact values for $\eta \leftrightarrow \Delta_{\phi}$, $\nu \leftrightarrow \Delta_{\phi^2}$, etc.?
- Spectrum continuity near d = 2
 - Reorganization into Virasoro multiplets *N* = 1: [Cappelli *et al* 2018; Li 2021]
- Spectrum continuity in other critical models
- Answer general questions in this well-controlled context
 - Can we make sense of the asymptotic expansions?
 - Do all operators lie on Regge trajectories?

The Critical O(N) CFT

Bonus slides

[2201.09520, to be submitted to *Physics Reports*] + ONdata.m

- Aim: Collect all known results for (local) perturbative CFT-data for the O(N) CFT
 - High-order diagram results
 - One-loop dilatation operator [Kehrein, Wegner 1992; 1994; Hogervorst, Rychkov, Van Rees 2015; Liendo 2017]
 - Analytic bootstrap: dimensions and OPE coefficients of spinning operators
 Mellin space [Gopakumar *et al* 2016] Large spin perturbation theory/Lorentzian inversion formula [Caron-Huot 2017; Alday, JH, Van Loon 2017]

\mathbb{Z}_2 -even scalars

Scalars in the N = 1 theory

Table 8: \mathbb{Z}_2 even scalar operators for N = 1. The table includes operators with $\Delta^{4d} \leq 12$. The fact that there are two operators of dimension $\frac{8}{3}$ of the form $\Box^3 \phi^6$ is not a typo, for instance both operators are reported in table 5 of [41].

O	$\mathcal{O} \varepsilon$	$\Delta_{4-\varepsilon}^{(1)}$	$\Delta(\varepsilon)$	Δ_{3d}	Family
Op[E,0,0]	1	0	exact	0	
Op[E,0,1]	ϕ^2	$[2-\varepsilon]+rac{1}{3}\varepsilon$	$\varepsilon^7[82]$	1.412625(10)[17]	12
Op[E,0,2]	ϕ^4	$[4-2\varepsilon]+2\varepsilon$	$\varepsilon^7[82]$	3.82951(61)[146]	1_4
Op[E,0,3]	ϕ^6	$[6 - 3\varepsilon] + 5\varepsilon$	ε^2 [240]	6.8956(43)[128]	1 ₆
Op[E,0,4]	$\square^2 \phi^4$	$[8-2\varepsilon]+rac{10}{9}\varepsilon$	ε^1	7.2535(51)[128]	104
Op[E,0,5]	ϕ^8	$[8-4\varepsilon]+rac{28}{3}\varepsilon$	ε^2 [240]		18
Op[E,0,6]	$\square^3 \phi^4$	$[10 - 2\varepsilon] + \frac{1}{3}\varepsilon$	ε^1		
Op[E,0,7]	$\square^2 \phi^6$	$[10 - 3\varepsilon] + \frac{11}{3}\varepsilon$	ε^1		10 ₆
Op[E,0,8]	ϕ^{10}	$[10-5\varepsilon]+15\varepsilon$	ε^2 [240]		1_{10}
Op[E,0,9]	$\square^4 \phi^4$	$[12-2\varepsilon]+\tfrac{14}{15}\varepsilon$	ε^1		
Op[E,0,10]	$\square^3 \phi^6$	$[12-3\varepsilon]+\tfrac{8}{3}\varepsilon$	ε^1		
Op[E,0,11]	$\square^3 \phi^6$	$[12-3\varepsilon]+\tfrac{8}{3}\varepsilon$	ε^1		
Op[E,0,12]	$\square^2 \phi^8$	$[12-4\varepsilon]+\tfrac{68}{9}\varepsilon$	ε^1		10 ₈
Op[E,0,13]	ϕ^{12}	$[12-6\varepsilon]+22\varepsilon$	ε^2 [240]		1 ₁₂

At/near d = 2

Mermin–Wagner theorem N > 2, $d = 2 + \epsilon > 2$: Non-linear sigma model $\mathcal{L} = \frac{1}{2}(\partial \varphi)^2 + \alpha(\varphi^2 - f^2)$

$$\Delta_{\varphi} = \frac{\epsilon}{2} + \frac{\epsilon}{2(N-2)} - \frac{N-1}{(N-2)^2}\epsilon^2 + \dots, \qquad \Delta_{\varphi_5^2} = 2 - \frac{\epsilon^2}{N-2} + \dots$$

 $d = 2, -2 \leq N \leq 2$: Exact results for quantum loop gas model [Nienhuis]

$$\Delta_{\varphi} = 1 - \frac{3g}{8} - \frac{1}{2g}, \qquad \Delta_{\varphi_{S}^{2}} = \frac{4}{g} - 2, \qquad g = 1 + \frac{1}{\pi}\arccos(N/2)$$

[Cardy, Hamber 1980] "In the (*d*, *N*) plane there is a line passing through (2, 2) across which the critical exponents are nonanalytic." Disputed [Chlebicki, Jakubczyk 2020]

Lorentz SO(d) plus parity = O(d).

Analytic continuation of O(d) and O(N) representations: [Binder, Rychkov 2019; Gräns-Samuelsson *et al* 2021]

- One-row Young Tableaux: $Y_{\ell} = \Box \Box \Box \cdots \Box$: spin ℓ operators for any d
- Two-row Young Tableaux: Ex $Y_{n-1,1} = \square \square \square$:

•
$$d = 4$$
: $(j, \bar{j}) = (\frac{n+1}{2}, \frac{n-1}{2}) \oplus (\frac{n-1}{2}, \frac{n+1}{2})$
• $d = 3$: parity-odd, spin $\ell = n - 1$.

• Three-row Young Tableaux: Ex $Y_{1,1,1} = \Box$

- d = 4: parity-odd, spin $\ell = 1$ "pseudovector"
- *d* = 3: parity-odd scalar
- d = 2: vanishes identically

One-loop diagonalisation

Master formula [Hogervorst, Rychkov, Van Rees 2015]

$$-i[D, \mathcal{O}_i] = \Delta^{(0)}\mathcal{O}_i + \varepsilon \Gamma_{ij}\mathcal{O}_j, \quad \Gamma_{ij} = \frac{1}{36}\lambda_{\mathcal{O}_i\mathcal{O}_j\hat{\theta}^4},$$

Four fields, spin zero:

$$\mathcal{O}_1 = \phi^4$$
, $\lambda_{\phi^4 \phi^4 \hat{\phi}^4} = 72$, $\Gamma_{11} = 2$, $\Delta = 4 - 2\varepsilon + 2\varepsilon$

Four fields, spin two:

$$\mathcal{O}_1 = \phi^3 \partial^{\{\mu} \partial^{\nu\}} \phi, \quad \mathcal{O}_2 = \phi^2 \partial^{\{\mu} \phi \partial^{\nu\}} \phi, \quad \Gamma = \frac{1}{36} \begin{pmatrix} 60 & 24 \\ 4 & 64 \end{pmatrix}$$

Eigenvalues and left eigenvectors

$$\gamma = 2$$
: $\mathcal{O}_1 + 3\mathcal{O}_2 \propto \partial^{\{\mu}\partial^{\nu\}}(\phi^4)$, $\gamma = \frac{13}{9}$: $\mathcal{O}_1 - 2\mathcal{O}_2$