W mass measurement at LHCb

INFN-Genova seminar 3 March 2022

Mika Vesterinen, University of Warwick

[<u>JHEP 01 (2022) 036</u>, <u>hep-ex:2109.01113</u>, <u>LHCb-PAPER-2021-024</u>]

European Research Council

 $\tau_{\mu} \approx 2.2 \times 10^{-6} \text{ s}$

 $\tau_{\mu} \approx 2.2 \times 10^{-6} \text{ s}$

 $G_F \approx 1.2 \times 10^{-5} \text{ GeV}^{-2}$

 $G_F \approx 1.2 \times 10^{-5} \text{ GeV}^{-2}$

How does this weak charged current interaction relate to QED?

Electroweak unification

$$W^{\pm} = rac{1}{\sqrt{2}} ig(W_1 \mp i W_2 ig) \ ig(egin{array}{c} \gamma \ Z^0 \end{array} ig) = ig(egin{array}{c} \cos heta_{\mathrm{W}} & \sin heta_{\mathrm{W}} \ -\sin heta_{\mathrm{W}} & \cos heta_{\mathrm{W}} \end{array} ig) ig(egin{array}{c} B \ W_3 \end{array} ig) \end{array}$$

Massless photon
 Massive charged boson(s)

Electroweak unification

$$W^{\pm} = rac{1}{\sqrt{2}} ig(W_1 \mp i W_2 ig) \ ig(egin{array}{c} \gamma \ Z^0 \end{array} ig) = ig(egin{array}{c} \cos heta_{\mathrm{W}} & \sin heta_{\mathrm{W}} \ -\sin heta_{\mathrm{W}} & \cos heta_{\mathrm{W}} \end{array} ig) ig(egin{array}{c} B \ W_3 \end{array} ig) \end{array}$$

Massless photon
 Massive charged boson(s)
 A massive neutral boson

Weak neutral currents (1973)

Weak neutral currents (1973)

Can we predict the masses of these heavy weak bosons?

A MODEL OF LEPTONS*

Steven Weinberg[†]

Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite¹ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differences in the masses of the photon and intermediate meson, and in their couplings. We might hope to understand these differences by imagining that the symmetries relating the weak and electromagnetic interactions are exact symmetries of the Lagrangian but are broken by the vacuum. However, this raises the

and on a right-handed singlet

$$R \equiv \left[\frac{1}{2}(1 - \gamma_5)\right]e. \tag{2}$$

The largest group that leaves invariant the kinematic terms $-\overline{L}\gamma^{\mu}\partial_{\mu}L-\overline{R}\gamma^{\mu}\partial_{\mu}R$ of the Lagrangian consists of the electronic isospin \vec{T} acting on L, plus the numbers N_L , N_R of left- and right-handed electron-type leptons. As far as we know, two of these symmetries are entirely unbroken: the charge $Q = T_3 - N_R - \frac{1}{2}N_L$, and the electron number $N = N_R + N_L$. But the gauge field corresponding to an unbroken sym-

has mass

$$M_W = \frac{1}{2}\lambda g. \tag{9}$$

Their masses are

$$M_{Z} = \frac{1}{2}\lambda(g^{2} + g'^{2})^{1/2}, \qquad (12)$$

$$M_A = 0, \qquad (13)$$

[the charged spin-1 field] has mass

$$M_W = \frac{1}{2}\lambda g. \tag{9}$$

[the neutral spin-1 field] masses are

$$M_{Z} = \frac{1}{2}\lambda(g^{2} + g'^{2})^{1/2}, \qquad (12)$$

$$M_A = 0,$$
 (13)

How to we determine (g, g', λ) ?

[the charged spin-1 field] has mass

$$M_W = \frac{1}{2}\lambda g. \tag{9}$$

[the neutral spin-1 field] masses are

$$M_{Z} = \frac{1}{2}\lambda(g^{2} + g'^{2})^{1/2}, \qquad (12)$$

$$M_A = 0, \tag{13}$$

$$G_W^{1/\sqrt{2}} = g^2 / 8M_W^2 = 1/2\lambda^2$$

muon lifetime again

$$e = gg'/(g^2 + g'^2)^{1/2}$$

fine structure constant

[the charged spin-1 field] has mass

$$M_W = \frac{1}{2}\lambda g. \tag{9}$$

[the neutral spin-1 field] masses are

$$M_{Z} = \frac{1}{2}\lambda(g^{2} + g'^{2})^{1/2}, \qquad (12)$$

$$M_A = 0, \qquad (13)$$

so that (14) gives g and g' larger than e, so (16) tells us that $M_W > 40$ BeV, while (12) gives $M_Z > M_W$ and $M_Z > 80$ BeV.

Determination of m_z is "easy" but m_w more challenging...

Coordinates

Coordinates

W mass determination with charged lepton p_T

Final UA1+UA2 results (~1983)

 $m_{W^{\pm}} = 82.1 \pm 1.7 \text{ GeV}$ $m_{Z^0} = 93.0 \pm 1.7 \text{ GeV}$

Standard Model predictions confirmed [to a few %]!

Why are we still measuring the W mass then?

Modern prediction of mw

Parameter	Measured value	Approx. precision
α-1	137.035999084(21)	1 part in 1010
GF	1.166 3787(6) x 10 ⁻⁵ GeV ⁻²	1 part in 10 ⁶
mz	91.1876 ± 0.0021 GeV	1 part in 10 ⁵

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F}$$

Modern prediction of mw

Parameter	Measured value	Approx. precision
α ⁻¹	137.035999084(21)	1 part in 10 ¹⁰
GF	1.166 3787(6) x 10 ⁻⁵ GeV ⁻²	1 part in 10 ⁶
mz	91.1876 ± 0.0021 GeV	1 part in 10 ⁵

Modern prediction of mw

Parameter	Measured value	Approx. precision	
α-1	137.035999084(21)	1 part in 10 ¹⁰	
GF	1.166 3787(6) x 10 ⁻⁵ GeV ⁻²	1 part in 10 ⁶	
mz	91.1876 ± 0.0021 GeV	1 part in 10 ⁵	

Global electroweak fit by the gFitter group EPJC 78, 675 (2018)

The three most precise measurements

Extremely challenging measurements!

perturbative series.

theory, parameterisations etc...

Rapidity Distribution of Z Bosons at the LHC

At p_T ~ 40 GeV:

Momentum resolution ~ few %

✓ ε(π/K→μ) ~ 10⁻³ for ε(µ→μ) ~95%

LHCb can help with the W mass in two ways...

1) Constrain the PDFs with cross-section measurements

EPJC 75 (2015) 12, 601

Use muon p_T distribution in $pp \rightarrow W + X \rightarrow \mu v + X$

- 1. Partial anticorrelation of the PDF uncertainty
- 2. Plenty of statistics
- 3. W p_T distribution will be challenging...

Part 2: Proof-of-principle measurement of mw with LHCb

hep-ex:2109.01113 LHCb-PAPER-2021-024

Selecting $W \rightarrow \mu \nu$ and $Z \rightarrow \mu \mu$ candidates

$W \rightarrow \mu v$	2.4 million*
Z→µµ	0.2 million**

 $\sigma_{\rm stat}(m_W) \sim 20 {
m MeV}$

*In 28 < p_T < 52 GeV and 2.2 < η < 4.4 region used for m_W fit **Mass within ±14 GeV of nominal Z mass

Our mw-sensitive observable

The challenge is *modelling* the data, but first...
Curvature biases

Curvature biases

Curvature biases

Using the *pseudomass**

EPJC 81 (2021) 3, 251

$$M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1-\cos\theta)}$$

*Inspired by similar variable used in PRD 91, 072002 (2015)

EPJC 81 (2021) 3, 251

The μ^+ and μ^- are now independent "probes" of q/p biases!

*Inspired by similar variable used in PRD 91, 072002 (2015)

Curvature corrections from the pseudo mass

Typical size of q/p corrections ~ 10⁻⁵ GeV⁻¹

Now the data are easier to model.

Muon momentum smearing

$\chi^2_{\rm total}/{\rm ndf} = 1862/2082$

Simultaneous fit of Z, Y(1S) and J/ Ψ data (and simulation) in many categories¹

Contributes 7 MeV uncertainty on mw

[1] 36 fit categories (based on species, magnet polarity, η of the two muons).

[2] Includes statistics, variations in the PDG resonance masses, detector material budget, final state radiation and the form of the smearing function.

Muon (trigger, tracking, ID) efficiency modelling

Sufficient sub detector redundancy to measure the efficiencies.

Contributes 6 MeV to uncertainty on mw

Isolation efficiency modelling

Contributes 4 MeV uncertainty on mw

Vector boson production model

 $\mathrm{d}\sigma$

QED FSR \rightarrow 7 MeV uncertainty Missing EW corrections \rightarrow 5 MeV uncertainty

General **QCD** form of kinematics:

$$\begin{aligned} \overline{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\theta\mathrm{d}\phi} &= \overline{16\pi} \,\overline{\mathrm{d}p_{\mathrm{T}}^{V}\mathrm{d}y\mathrm{d}M} \\ \left\{ (1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin2\theta\cos\phi \right. \\ \left. + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right. \\ \left. + A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right\}, \end{aligned}$$

 $\mathrm{d}\sigma^{\mathrm{unpol.}}$

3

The p_T dependence of the cross section is particularly important...

Boson p_T distribution

Related observable with better experimental resolution:

$$\phi^* \equiv \tan\left(\frac{\pi - \Delta\phi}{2}\right)/\cosh\left(\frac{\Delta\eta}{2}\right) \sim \frac{p_{\rm T}}{M} \quad \text{EPJC 71:1600 (2011)}$$

Modelling the boson p_T distribution

Convergence of perturbative series spoiled by large logs.

Resummation to all orders is required.

Parton showers (Pythia, Herwig etc...) effectively resum the leading logs.

Limited accuracy can be compensated by "tune" of α_s and the "intrinsic k_T"

Effect of as and intrinsic k_T variation [in Pythia] 1907.09958 (2019)

or intrinsic k_T

Tuning and validation with $Z p_T$ data

- ---- POWHEGPYTHIA (ref.)
- —— Herwig
- POWHEGHERWIG
- PYTHIACT09MCS
- PythiaNNPDF31
 - DYTURBO

Note that the W boson model gets an independent tune in the m_w fit <u>1907.09958 (2019)</u>

Best description from POWHEG+Pythia with $\alpha_s \approx 0.125$

Uncertainty from envelope of m_w fits based on 5 models.

Contributes **11 MeV** uncertainty on mw

Angular coefficients

X Event generators (e.g. POWHEG)

V Fixed order QCD

For the renormalisation and factorisation scale uncertainties we use the *uncorrelated* (31-point) scheme.

Angular coefficients

Using a_{s^2} fixed order predictions from DYTurbo

31-point scale variations \rightarrow 20-30 MeV uncertainty on m_w.

Mitigate by introducing a floating A₃ scale factor in the m_W fit.

Contributes 9 MeV uncertainty on mw

The simultaneous fit to W and Z data

 χ^2 /ndf = 105/102

With NNPDF31 PDFs, but there are alternatives...

Democratic PDF average and uncertainty

Three separate results are reported in the paper.

Central result is a simple average of the three.

Contributes 9 MeV uncertainty on mw

Measurement uncertainty summary

Source	Size	[MeV]
Parton distribution functions	9	Average of NNPDF31, CT18, MSHT20)
Theory (excl. PDFs) total	17	
Transverse momentum model	11	Envelope from five different models
Angular coefficients	10	"Uncorrelated" 31 point scale variation
QED FSR model	7	Envelope of Pythia, Photos and Herwig)
Additional electroweak corrections	5	Test with POWHEGew)
Experimental total	10	
Momentum scale and resolution modelling	7	Includes simple statistical contributions.
Muon ID, trigger and tracking efficiency	6	dependence on external inputs
Isolation efficiency	4	and datails of the methods
QCD background	2	and details of the methods.
Statistical	23	
Total	32	

[Pre-unblinding] Cross checks

- 1. Orthogonal splits: Five ~50:50 splits of the data (polarity, charge \times polarity, etc...) all result in [mw] differences within 2 σ .
- 2. Fit range: The result is stable w.r.t. variations in the upper/lower limits.
- 3. Fit freedom: The result is stable w.r.t. variations in the model freedom (e.g. 3 independent a_s values instead of 2, etc...)
- 4. W-like fit of the Z mass: Measurements with μ^+ and μ^- agree to better than 1σ and their average agrees with the PDG value to better than 1σ .
- 5. **\delta m_W fit:** Alternative fit with the difference between the W⁺ and W⁻ masses as another floating parameter: this parameter is consistent with zero within 1σ .
- 6. Additional tests with NNLO PDFs instead of NLO PDFs, variations in the charm quark mass, etc... affect m_W at the ≤ 1 MeV level.
- Pseudodata challenges: fitting the default POWHEG+Pythia model to pseudo data with DYTurbo, Herwig, etc... based models of the boson p_T. Results are commensurate with our 11 MeV uncertainty.

[JHEP 01 (2022) 036, hep-ex:2109.01113, LHCb-PAPER-2021-024]

Conclusions and outlook

First measurement of m_w from LHCb with 32 MeV uncertainty is consistent with previous measurements and with the prediction.

A total uncertainty of \approx 20 MeV looks achievable with existing LHCb data.

EPJC 79 (2019) 6 encourages us to upgrade to a double-differential fit.

We look forward to working with the other LHC experiments, and the theory community, to fully exploit LHCb's unique/complementary rapidity coverage to achieve the ultimate precision on m_W .

Backup slides

Prospects for LHC average

ATLAS+LHCb average under the simplest assumptions:

A detailed ATLAS+LHCb collaborative effort will be required to precisely determine these two correlation coefficients but it seems likely that ρ_{PDF} will be negative <u>1508.06954</u> while the (non-PDF) theory uncertainty will have a positive coefficient. 60

Sensitivity to other angular coefficients

Boson p_T state-of-the-art (example, of many groups)

Custom alignment for high p_T analyses

LHCb's successful real-time alignment and calibration was commissioned in Run-2 JINST 14 (2019) P04013

For the very high (up to ~1 TeV) momentum muons in EW processes the resolution could be improved with a custom alignment including mass-constrained Z candidates.

Recent study on a_s 2106.10289

[Submitted on 18 Jun 2021]

An investigation of the α_S and heavy quark mass dependence in the MSHT20 global PDF analysis

T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne

We investigate the MSHT20 global PDF sets, demonstrating the effects of varying the strong coupling $\alpha_S(M_Z^2)$ and the masses of the charm and bottom quarks. We determine the preferred value, and accompanying uncertainties, when we allow $\alpha_S(M_Z^2)$ to be a free parameter in the MSHT20 global analyses of deep-inelastic and related hard scattering data, at both NLO and NNLO in QCD perturbation theory. We also study the constraints on $\alpha_S(M_Z^2)$ which come from the individual data sets in the global fit by repeating the NNLO and NLO global analyses at various fixed values of $\alpha_S(M_Z^2)$, spanning the range $\alpha_S(M_Z^2) = 0.108$ to 0.130 in units of 0.001. We make all resulting PDFs sets available. We find that the best fit values are $\alpha_S(M_Z^2) = 0.1203 \pm 0.0015$ and 0.1174 ± 0.0013 at NLO and NNLO respectively. We investigate the relationship between the variations in $\alpha_S(M_Z^2)$ and the uncertainties on the PDFs, and illustrate this by calculating the cross sections for key processes at the LHC. We also perform fits where we allow the heavy quark masses m_c and m_b to vary away from their default values and make PDF sets available in steps of $\Delta m_c = 0.05$ GeV and $\Delta m_b = 0.25$ GeV, using the pole mass definition of the quark masses. As for varying $\alpha_S(M_Z^2)$ values, we present the variation in the PDFs and in the predictions. We examine the comparison to data, particularly the HERA data on charm and bottom cross sections and note that our default values are very largely compatible with best fits to data. We provide PDF sets with 3 and 4 active quark flavours, as well as the standard value of 5 flavours.

[Pseudo]data challenges

Can our [POWHEG+Pythia] model adapt itself to pseudo data corresponding to *other* models of the W/Z p_T distributions?

Data config.	χ^2_W	χ^2_Z	δm_W [MeV]	
POWHEGPythia	64.8	34.2		
HERWIG	71.9	600.4	1.6	
POWHEGHERWIG	64.0	118.6	2.7	🔽 No more than 10
Pythia, CT09MCS	71.0	215.8	-2.4	MeV bias on mwl
Pythia, NNPDF31	66.9	156.2	-10.4	
DYTURBO	83.0	428.5	4.3	

Momentum smearing fit parameter values

$$\frac{q}{p} \to \frac{q}{p \cdot \mathcal{N}(1 + \alpha, \sigma_{\rm MS})} + \mathcal{N}\left(\delta, \frac{\sigma_{\delta}}{\cosh \eta}\right)$$

Parameter	Fit value
$\alpha \ (\eta < 2.2)$	$(0.58 \pm 0.10) \times 10^{-3}$
$\alpha \ (2.2 < \eta < 4.4)$	$(-0.0054 \pm 0.0025) \times 10^{-3}$
δ	$(-0.48 \pm 0.37) \times 10^{-6} \text{ GeV}^{-1}$
$\sigma_{\delta} \ (\eta < 2.2)$	$(17.7 \pm 1.2) \mathrm{keV}^{-1}$
$\sigma_{\delta} \ (2.2 < \eta < 4.4)$	$(14.9 \pm 0.9) \mathrm{keV}^{-1}$
$\sigma_{ m MS}$	$(2.015 \pm 0.019) \times 10^{-3}$

Our tunes to the Z p_T data

Program	χ^2/ndf	$lpha_{s}$	
DYTURBO	208.1/13	0.1180	$g = 0.523 \pm 0.047 \mathrm{GeV}^2$
POWHEGPythia	30.3/12	0.1248 ± 0.0004	$k_{\rm T}^{\rm intr} = 1.470 \pm 0.130 { m GeV}$
POWHEGHERWIG	55.6/12	0.1361 ± 0.0001	$k_{ m T}^{ m intr} = 0.802 \pm 0.053 { m GeV}$
HERWIG	41.8/12	0.1352 ± 0.0002	$k_{\mathrm{T}}^{\mathrm{intr}} = 0.753 \pm 0.052 \mathrm{GeV}$
Pythia, CT09MCS	69.0/12	0.1287 ± 0.0004	$k_{\rm T}^{\rm intr} = 2.113 \pm 0.032 { m GeV}$
Pythia, NNPDF31	62.1/12	0.1289 ± 0.0004	$k_{\rm T}^{\rm intr} = 2.109 \pm 0.032 { m GeV}$

Data challenge exercise

Data config.	χ^2_W	χ^2_Z	$\delta m_W \; [{ m MeV}]$	$lpha_s^Z$	$lpha_s^W$	A_3 scaling
POWHEGPythia	64.8	34.2	_	0.1246 ± 0.0002	0.1245 ± 0.0003	0.979 ± 0.029
HERWIG	71.9	600.4	1.6	0.1206 ± 0.0002	0.1218 ± 0.0003	1.001 ± 0.029
POWHEGHERWIG	64.0	118.6	2.7	0.1206 ± 0.0002	0.1226 ± 0.0003	0.991 ± 0.029
Pythia, CT09MCS	71.0	215.8	-2.4	0.1239 ± 0.0002	0.1243 ± 0.0003	0.983 ± 0.029
Pythia, NNPDF31	66.9	156.2	-10.4	0.1225 ± 0.0002	0.1223 ± 0.0003	0.967 ± 0.029
DYTURBO	83.0	428.5	4.3	0.1305 ± 0.0001	0.1321 ± 0.0003	0.982 ± 0.028

Consistency between orthogonal subsets of data

Subset	$\chi^2_{\rm tot}/{\rm ndf}$	δm_W [MeV]
Polarity = -1	92.5/102	
Polarity = +1	97.3/102	-57.5 ± 45.4
$\eta > 3.3$	115.4/102	
$\eta < 3.3$	85.9/102	$+56.9\pm45.5$
Polarity $\times q = +1$	95.9/102	
Polarity $\times q = -1$	98.2/102	$+16.1 \pm 45.4$
$ \phi > \pi/2$	98.8/102	
$ \phi < \pi/2$	115.0/102	$+66.7\pm45.5$
$\phi < 0$	91.8/102	
$\phi > 0$	103.0/102	-100.5 ± 45.3

Varying the freedom of the fit model

Configuration change	$\chi^2_{\rm tot}/{\rm ndf}$	δm_W [MeV]	$\sigma(m_W)$ [MeV]
$2 \rightarrow 3 \alpha_s$ parameters	103.4/101	-6.0	± 23.1
$2 \to 1 \ \alpha_s \text{ and } 1 \to 2 \ k_{\mathrm{T}}^{\mathrm{intr}} \text{ parameters}$	116.1/102	+13.9	± 22.4
$1 \rightarrow 2 \ k_{\rm T}^{\rm intr}$ parameters	104.0/101	+0.4	± 22.7
$1 \rightarrow 3 \ k_{\rm T}^{\rm intr}$ parameters	102.8/100	-2.7	± 22.9
No A_3 scaling	106.0/103	+4.4	± 22.2
Varying QCD background asymmetry	103.8/101	-0.7	± 22.7

Stability w.r.t. varying the [q/p_T] fit range

Change to fit range	$\chi^2_{\rm tot}/{\rm ndf}$	$\delta m_W [$ MeV $]$	$\sigma(m_W)$ [MeV]
$p_{\rm T}^{\rm min} = 24 {\rm GeV}$	96.5/102	+6.8	19.7
$p_{\rm T}^{\rm min} = 26~{ m GeV}$	97.7/102	+9.6	20.9
$p_{\rm T}^{\rm min} = 30 { m GeV}$	102.7/102	+3.0	25.7
$p_{\rm T}^{\rm min} = 32 { m GeV}$	84.9/102	-21.6	30.8
$p_{\rm T}^{\rm max} = 48 {\rm GeV}$	105.3/102	-3.8	23.2
$p_{\rm T}^{\rm max} = 50 {\rm GeV}$	103.0/102	-2.1	23.0
$p_{\mathrm{T}}^{\mathrm{max}} = 54 \mathrm{GeV}$	96.3/102	-8.6	22.6
$p_{\rm T}^{\rm max} = 56 { m GeV}$	103.7/102	-14.3	22.4

Example postfit projections

Parametric correction at high boson p_T

Also applied to the model of W production but with 100% uncertainty $= > \sim 1$ MeV on m_W.

Hadronic background model

