Operation and performances of the CMS Electromagnetic CALorimeter during the 2010 collision run at $\sqrt{s} = 7$ TeV

Incontri di Fisica delle Alte Energie
Perugia, 27-29 Aprile 2011

Leonardo Di Matteo
University of Milano-Bicocca
Outline

- CMS Electromagnetic CALorimeter: description and goals
- Status and stability
- Calibration strategy and results
- Reconstruction
 - Low level variables
 - Photons
 - Electrons
- Summary
CMS Electromagnetic CALorimeter

- **ECAL Barrel**
 - 61200 2x2x23 cm3 PbWO$_4$ crystals – 26 X_0
 - 36 Super Module (SM)
 - Avalanche Photo Diods (APD)
- **ECAL Endcap**
 - 14648 3x3x22 cm3 PbWO$_4$ crystals – 25 X_0
 - 4 Dees
 - Vaccum Photo Triod (VPT)
- **ECAL Preshower**
 - Pb (2X_0) + Si + Pb(1X_0) + Si planes
 - 4300 1.8x63 mm2 Si sensors
ECAL goals and performance target

Physics goals

- QCD
 - $\gamma + \text{jets}$
 - J/ψ and γ
 - $WW, WZ + \text{jets}$
- SUSY
 - Electrons + MET + jets
- Higgs
 - $H \rightarrow ZZ \rightarrow 4e$
 - $H \rightarrow WW \rightarrow 2\epsilon 2\nu$
 - $H \rightarrow \gamma\gamma$
- Exotic particles
 - $Z'/G \rightarrow \epsilon\epsilon$
 - $W' \rightarrow \epsilon\nu$
 - $G \rightarrow \epsilon\epsilon$

Detector design

- High granularity
 - Space resolution
 - Particle identification
- Excellent energy resolution
 - High mass resolution (together with excellent space resolution)
 - 0.5% target for high energy unconverted photons

Temperature/HV stability
Accuracy of intercalibration
Non uniformity of longitudinal light collection

Higgs Boson Mass Resolution

No mis-calibration
After final calibration corrections

4% mis-calibration
No corrections
ECAL status and stability

99.1% (98.6%) fully operational scales in EB (EE)

Temperature stability well within specifications (<0.05° EB, 0.1 EE)

Light monitoring below the required 0.2% (RMS variation < 0.03%)
ECAL calibration strategy

- **Precalibration**
 - Test Beams, Lab measurements, Cosmics and Beam Dumps

- **Calibration in-situ**
 - **φ-symmetry calibration**: invariance of energy flow around the beam axis in minimum bias events. Intercalibrate crystals at the same pseudorapidity.
 - **π⁰ and η calibration**: mass constraint on photon energy, use unconverted γ’s reconstructed in 3x3 matrices of crystals.
 - **High energy electron from W and Z decays** (E/p with single electrons and invariant mass with double electrons).

- **Absolute energy scale** monitor and correction with Di-electrons resonances and Z→ee and J/ψ→ee
ECAL calibration results

- **Intercalibration**
 - Target precision at 0.5%: almost there with first 6 months of data taking

- **Absolute scale**
 - DataMC Z mass agreement at 0.1% (2%) level in EB (EE)
ECAL objects reconstruction

- **Step 0**: energy deposits → RecHits
- **Step 1**: clustering → BasicClusters
 - Already enough to reconstruct unconverted photon energy (5x5 crystal matrix contains 97% of the energy)
- **Step 2**: super-clustering → SuperClusters
 - Necessary to collect bremsstrahlung and conversion energies: look for nearby clusters in along ϕ (bending direction)
- Excellent Data-MC agreement for all the Steps
Photons & Electrons

- Each supercluster which does not match a track and an hadronic deposit is a photon candidate.
- Two main handles can be used to distinguish prompt γ (coming from the hard scattering) from hadronic decays:
 - Topology of the E.M. Shower
 - Isolation

- Each supercluster which does match a track and NOT an hadronic deposit is an electron candidate.
- 4-mom is build using information from both ECAL and Tracker.
- Same handles used for γs to distinguish real electrons from fakes: E.M. Shower Shape+Isolation.

Physics Object

Physics Analysis

- Y(1S) Y(2S) Y(3S) Di-Electron inv. mass
- Data/MC

Data/Theory

- CMS Preliminary 2010
- $\sqrt{s} = 7\, \text{TeV}$
- $L = 74\, \text{nb}^{-1}$
- $|\eta| < 1.4442$
- $E_{T}^{\gamma} < 5\, \text{GeV}$

- CMS Preliminary 2010
- $\sqrt{s} = 7\, \text{TeV}$
- $L = 2.9\, \text{pb}^{-1}$
- $|\eta| < 1.45$
- $E_{T}^{\gamma} < 5\, \text{GeV}$

- CMS Preliminary 2010
- $\sqrt{s} = 7\, \text{TeV}$
- $L_{int} = 35\, \text{pb}^{-1}$
- $E_{T}/2 < \mu < 2 E_{T}$
- Theory scale dependence
- PDFs uncertainty
- Stat. + syst. uncertainty
- $\pm 11\%$ lumi. unc. not shown

Photon Isolation

- Data/MC

Isolated photon p_{T}
Crystal and preshower CMS Electromagnetic Calorimeter fully operational

- ECAL stability is within specifications and constantly monitored

Successful data taking in 2010

- In-situ calibration procedures are being carried out
 - Channel-to channel calibration precision at 0.6% level in the central EB region (near 0.5% target for $H \rightarrow \gamma \gamma$)
 - Global energy scale in agreement with expectations within 0.1% (EB) and 2% (EE)

- Electromagnetic objects reconstruction fully validated w.r.t. MC predictions
 - e/γ commissioning done → ECAL ready for physics measurements
BACKUP
The CMS detector

- Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays) measured in TRACKER (Silicon layers).
- Energy and positions of electrons and photons measured in ECAL
- Energy and position of hadrons and jets measured mainly in HCAL
- Muons identified and momentum measured in external muon spectrometer
- Neutrinos “detected and measured” through measurement of missing transverse energy in calorimeters (hermeticity + good Missing Et resolution)
Anomalous signals

- ECAL observes anomalous signals in collision events: apparent large energy deposition in a single crystal
- Signals uniformly distributed in barrel → APD readout
- Origin: deposits by heavily ionizing particles in APDs
- Signal quality checked and detector anomalies dealt with
 - energy pattern inconsistent with electromagnetic showers
 - timing distribution