Diboson Search and Multivariate Tools in the \(l\nu + b/c \) Jets Channel at CDF

Federico Sforza

INFN & Università di Pisa
Examples of improvements thanks to machine learning techniques:

1. Diboson Search: Basics and Problems
2. Support Vector Machines
3. Neural Networks
Diboson Search: Basics and Problems

WW/WZ → lν + b/c Jets Search Basics

\[p\bar{p} \rightarrow WW/WZ \rightarrow l\nu + b/c \text{ Jets} \]

Event selection:
- high \(E_T \) lepton (> 20 GeV) and \(\not{E}_T \) (> 20 GeV).
- 2 central jets \((E_T > 20 \text{ GeV}, |\eta| < 2.0) \).
- At least one *Heavy Flavor (HF) Tag*:
 \[\Rightarrow \text{ presence of a secondary vertex identifies } b/c \text{ jets.} \]

Motivations:
- Rare process (e.g. \(\sigma_{WZ} = 3.22 \pm 0.23 \text{ pb} \)) never observed in this decay channel.
- Same final states of the \(WH \) golden channel \((M_H \lesssim 145 \text{ GeV}/c^2) \).
- \(S/B \sim O(10^{-3}) \), large \(\Delta B \): counting experiments are not possible.
Challenges and Solutions

Machine learning techniques are used in several areas:

1. Remove hard to model backgrounds:
 - need to: reduce multi-jet (QCD) background.
 - solution: QCD Veto based on Support Vector Machines (SVM) algorithm.

2. Distinguish quark flavor:
 - need to: understand underlying structure of HF tagged jets.
 - solution: Neural Network Flavor Separator.

3. Improve invariant mass resolution:
 - need to: exploit maximum information to refine jet energy measure.
 - solution: Neural Network b-quark specific jet energy correction.
Central Electrons (CEM): sample with \(\approx 25 - 30\% \) events from multi-jet (QCD) contamination.

data driven QCD model of the fake \(W \) obtained reversing \(\geq 2 \) out of 5 electron-id requirements:

- not reproducible with MC;
- sample statistically limited (\(\approx 20k \) events).

Is it possible to use multivariate techniques in this problem?

- **Support Vector Machines** algorithm supposed to be optimal in this case.
- “recently” (1995) developed machine learning technique.
- interesting tool rarely exploited in high energy physics.
Concept: best hyper-plane dividing two classes of vectors.

- Minimization of $|\vec{w}|^2$ ($\vec{w} \equiv$ normal to the plane) with constrain:

\[
y_i(\vec{x}_i \cdot \vec{w} + b) - 1 \geq 0 \quad \left\{ \begin{array}{l} y_i = +1; \quad i \in \text{signal} \\ y_i = -1; \quad i \in \text{bkg} \end{array} \right.
\]

- Equivalent to maximize:

\[
L = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j
\]

- Non-linear separation obtained with a transformation on the scalar products:

\[
K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \quad \text{with} \quad \phi : \mathbb{R}^n \mapsto \mathcal{H} \quad K = \text{Kernel function}
\]
QCD Veto Based on the SVM Algorithm

Training procedure and parameter selection:
- discrimination based on combinations of 21 test variables.
- *thousands of input combinations*: grid computing for brute force approach;
- Criteria: maximal efficiency on the training samples.
- Consistency check on data control region.

Results:
- optimal “machine” obtained with minimal set of 6 variables:
 - 3 related to the W kinematic;
 - 2 related to the 2nd Jet energy;
 - 1 relating all jet correction to the E_T.
- QCD contamination $\lesssim 10\%$
- signal efficiency:
 - $\varepsilon_{W(e,\nu)+2$jets} \approx 95\%$, $\varepsilon_{WZ} \approx 97.5\%$.

Software and results presented to the CHEP2010 conference and accepted in proceedings.
QCD Rejection

Algorithm applied to $W \rightarrow e\nu$:

![Graph showing QCD and W+Jets distributions](image1)

Same algorithm applied to $W \rightarrow \mu\nu$:

![Graph showing QCD and W+Jets distributions](image2)
Neural Network Based Improvements:

- Heavy Flavor Separator.
- b-jet NN-energy corrections.

These improvements play a fundamental role in several CDF analysis (Single-top, WH, etc.)
Neural Network Generalities

Concept: non-linear model of input distributions based on a sigmoid functions serie.

Optimal algorithm to trace hidden correlations, prefers large training sets.

- Obtain the best weights \((\omega_i)\) for \(o_k\):

\[
o_k = S \left(\sum_{j=0}^{M} \omega_{jk} \cdot S \left(\sum_{i=0}^{d} \omega_{ij} x_j + \mu_{0j} \right) \right)
\]

- \(d\) input nodes, \(M\) hidden nodes, \(k\) output nodes
- Sigmoid or activation function: \(S = \pm 1\) if node report signal or bkg

Training:

- function minimization in a \(M \times d\)-dim space.
KIT* Flavor Separator

Aim: retain most of the signal (b-jets) pulling apart c and light flavor jets contribution.
- Played fundamental role in Single-top discovery.

- Secondary vertex identification already tags the jet.
- Weaker correlations:
 - \(b \) production \(\leftrightarrow \) jet structure:
 - per track variables, tracks multiplicity, vertex mass...
- NN with 26 input nodes, 10 hidden nodes, 1 output node.
- 2 side distribution: \(\Rightarrow \) \(b-c \) quarks separation.

* developed by the Karlsruhe Institute of Technology.
b-Jet Energy Corrections

Standard CDF jet energy corrections can be improved assuming b-quark as the initial parton:

- b-hadrons fragmentation, presence of semileptonic decays, color flow effects: difficult to disentangle the correlations.
- NN with 9 input variables: from tracking, calorimeter, secondary vertex

- Optimization on WH MonteCarlo.
- Improvement also in WZ invariant mass resolution.
- Z peak resolution \((mean/sigma)\):

 \[0.154 \pm 0.003 \Rightarrow 0.116 \pm 0.002\]
Conclusions

Cut based analysis can be not enough in complicated environments when looking for rare signal.

- Machine learning techniques are a powerful tool but can not be used thoughtlessly:
 - over-fitting, training set choosing, test on control samples, etc.
- Understanding the involved physical processes is crucial to obtain good results.

Thanks for you attention!
Pretag: CEM (top), CMUP (bottom)

Met

Lepton P_T
Pretag: CMX (top), EMC (bottom)

Met

Lepton P_T
Pretag: CEM (top), CMUP (bottom)

\(\Delta R(\text{lep}, \text{jet}1) \) \quad \Delta \phi(\text{met}, \text{jet}1) \quad WM_T

\begin{align*}
\text{CEM Pretag} & \quad \text{CDF Run II Preliminary (5.7 fb}^{-1}) \\
\text{CMUP Pretag} & \quad \text{CDF Run II Preliminary (5.7 fb}^{-1}) \\
\end{align*}

F. Sforza (INFN & Università di Pisa)
Pretag: CMX (top), EMC (bottom)

$\Delta R(\text{lep, jet1})$ $\Delta \phi(\text{met, jet1})$ W_{M_T}
The CDF II Detector

1. 3 silicon sub-detectors (L00, SVX II, ISL)
 - \(r_{\text{max}} \simeq 30 \text{ cm} \) → high track density
 - coverage: \(|\eta| \lesssim 2\)

2. Wire chamber (COT):
 - \(r_{\text{max}} \simeq 130 \text{ cm} \)
 - coverage: \(|\eta| \lesssim 1\)

3. Calorimeter system:
 - 2 sub-detectors: central e forward
 - electromagnetic (EM) and hadronic (HAD) sections.

4. Muon chambers:
 - Many sub-detectors: CMU, CMP, CMX, BMU
 - coverage: \(|\eta| \lesssim 1.5\)

\(r, \phi, \eta \equiv -\ln[\tan(\theta/2)] \)
\[\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \]
\[E_T = E \sin \theta \]
Lepton Selection

The detector has a composite structure:

effort to unify lepton reconstruction algorithms (9) and trigger paths (7):

CEM, PHX:
- **electrons**: EM deposit + track, calorimetric isolation;
- 2 dedicated trigger paths.

CMUP, CMX:
- **muons**: signal in the muon chambers + track + MIP in the calorimeter, calorimetric isolation;
- 2 dedicated trigger paths.

BMU, CMU, CMP, CMXNT
- **muons (LOOSE)**: signal in the muon chambers + tracks, calorimetric isolation;
- 3 generic trigger paths: MET+jets.

ISOTRK:
- **tracks (mainly muons)**: high quality track, track isolation;
- 3 generic trigger paths: MET+jets.
Jet \equiv final state of quark hadronization

- reconstruction algorithm JETCLU04
- energy corrected for detector effects (JES).

Quarks $b \Rightarrow$ Heavy Flavor hadrons (HF) long lifetime: $c\tau \approx 450 \mu m \Rightarrow$ secondary decay vertexes.

SecVtx algorithm:

- a jet is "tagged" if the tracks within the cone form a secondary vertex.
- b-tag efficiency $\approx 40\%$
- c-tag efficiency $\approx 6\%$
- mistags (fake tags) $\approx 1\%$ (background)
Signal topology: \textit{lepton} + E_T + 2jets (1 or 2 tags)

⇒ \textit{4 background components:}

\textbf{EWK:} estimate from MC ($t\bar{t}$, s-top, Z+jets, WW, ZZ).

\textbf{Mistag:} W+fake tags ⇒ parametrized on jet data.

\textbf{QCD:} multi-jet events: lepton and E_T are faked by mis-reconstructed jets.

⇒ measured from data using a fit on E_T.

\textbf{W+HF:} Heavy Flavors ⇒ major background with large uncertainty.

- Normalization obtained from data;
- $f_j^{HF} = \frac{W+HF}{W+\text{jets}}$ estimated from MC.
$W + b\bar{b}, W + c\bar{c}, W + c$ estimate

- Large theoretical uncertainty on $\sigma_{W+\text{jets}}$.
- Ratio $W + \text{HF}/W + \text{jets}$ derived from MC (Alpgen, LO).
- Normalization (N_j^W) from the pretag data sample (N_j^{data}):

$$N_j^W = N_j^{\text{data}}\left(1 - F_j^{\text{nonW}}\right) - N_j^{\text{EWK}}$$

- $(1 - F_j^{\text{nonW}})$: free parameter in a maximum Likelihood fit.
- ≈ 90 MCs used:
QCD Background (Multi-jet Events)

\[(1 - F_{\text{nonW}}^j) \] estimated in the pretag sample:

- fake W models by reversing lepton identification cuts:
 1. isolation ;
 2. EM fraction;
 3. shower-id.

- kinematic characteristics identical to the lepton under examination;

- maximum likelihood fit on \(\not{E}_T \);

- systematic error of 30% on \(F_{\text{nonW}}^j \) (conservative approach);

- important to reduce the QCD contribution in the pretag sample.
QCD and Multivariate Techniques

- **Electrons:** sample with larger multi-jet contamination.

 Modeling fake W:
 - “anti-electron” sample, reverse ≥ 2 out of 5 cuts for the shower-id;

 \[
 \begin{align*}
 \text{Had}/\text{Em} &\leq 0.0055 + 0.00045 \times E \\
 \text{Strip } \chi^2 &\neq 10 \\
 L_{shr} &\leq 0.2 \\
 |dz_{CES}| &\leq 3.0 \text{ cm} \\
 -3.0 \text{ cm} &\geq Q_e \cdot dx_{CES} \leq 1.5 \text{ cm}
 \end{align*}
 \]

Main issue:
- *sample statistically limited* ($\approx 12k$ events)

Is it possible to use multivariate techniques in this problem?

- Support Vector Machines algorithm supposed to be optimal in this case.
- SVM is a recent (1995) “machine learning” technique
 \[\Rightarrow \text{interesting field of research, never used in high energy physics.}\]