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Magnetic Confinement Fusion

Inertial Confinement Fusion

Current upproaches to

thermonuclear controlled fusion
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Latest achievments MCF

First high confinement plasmas using D-T with berillium-tungsten wall

CONFIRMING MODELING PREDICTIONS
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ü Improved radiation uniformity

ü Improved target quality

2020: 
More than 
150 kJ of 
fusion 
energy

Most recent results on NIF 
(2020-2021)

2021: 1.35 MJ of fusion
energy over 1.93 MJ of

laser energy

Reduced impact
of Rayleigh Taylor
instability

Latest achievments ICF

NIC about 5 kJ of 
Fusion energy

High foot
campaigns (~20 kJ)
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Fusion
CHALLENGES

ü Fuel cycle (tritium breeding)

ü Material activation due to neutrons

ü Economy of cost

!
"𝐷 + !#𝑇 → a + $!𝑛 + 17.6 MeV

Magnetic Confinement Fusion

Inertial Confinement Fusion
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ü Aneutronic Energy Production (ecologic)

ü Relies on stable fuel elements only

ü Does not need cryogenic technology
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generated from p–B fusion present a broad energy spectrum that peaks around 4 MeV [1]; 
however, cutoff energies up to 10 MeV have been demonstrated experimentally [2–6]. In 
the last 15 years, p–B fusion has been effectively induced by means of high-power lasers, 
which has reported an impressive progression in the reaction yield [2,4,7,8], thus has 
become a point of interest for the energy sector where it is being considered as an 
alternative approach to conventional inertial confinement fusion schemes [9–11] and also 
potentially for medicine where intense α-particle beams can be used for radioisotope 
production [12]. However, an extensive systematic investigation of laser-based p–B fusion 
of the deep understanding of the underpinning physics is still missing [13]. An overview 
of the recent experimental progression in p–B fusion in terms of α-particle flux (or flux 
per input laser energy) is shown in Figure 1, both for the “in-target” [2–4,7,14] and 
“pitcher–catcher” geometries [5,6,8,15]. In this work, we show the first experimental 
results of efficient α-particle production from p–B fusion using a PW-class laser in the “in-
target” (i.e., direct irradiation) configuration. The results that were achieved during the 
same campaign in the “pitcher–catcher” geometry have been published elsewhere [5,6]. 

 
Figure 1. The experimental progress in p–B fusion, measured in terms of α-particle production in 
the “in-target” [2–4,7,14] and “pitcher–catcher” [5,6,8,15] geometries. The left-hand scale indicates 
the absolute α-particle flux (particles/sr), while the right-hand scale is normalized to the laser energy 
delivered on target (particles/sr/J). 

2. Materials and Methods 
The relatively short-pulse (2.2 ps) and high-energy (~1.4 kJ) PW-class laser system 

LFEX [16], which was operated at relativistic intensities (~3 × 1019 W/cm2) at the Institute 
of Laser Engineering of the Osaka University (Japan), was focused onto the front surface 
(normal incidence) of a boron nitride (BN) target with a thickness of 0.2 mm. The 
concentration of hydrogen in the sample was a few %, which came from the chemical 
synthesis of the material during the manufacturing process. 

As schematically shown in Figure 2, a Thomson parabola (TP) spectrometer was 
placed in the forward direction along the target normal to monitor the proton/ion plasma 
emission from the target’s rear surface, which was based on an acceleration mechanism 
commonly known as “target normal sheath acceleration” (TNSA) [17]. Protons that were 
accelerated via TNSA at the target’s rear side did not contribute to the generation of α-
particles from p–B fusion; however, the determination of their cutoff energy was 
important to confirm that that particular laser shot was representative of an optimal laser–
plasma coupling (a high laser intensity on the target’s front surface allows the generation 
of electrons with high temperature, also known as “hot electrons”, hence efficient TNSA 
at the target’s rear side and protons with high cutoff energies). Plasma ions were deflected 
by parallel electric and magnetic fields based on their charge-to-mass ratio and were 
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Two types of experimental configuration have been used

In addition, Labaune et al. used a ns laser to irradiate the catcher before the arrival of protons

Approaches used in experiments

C.Labaune, et al. Nat. Commun. 4, 2506 (2013)
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ü Aneutronic Energy Production (futuristic, ecologic)

ü Relies on stable fuel elements only

ü Laser-driven High brightness a-particle sources: short duration / small source size

ü Production of Short half-life radioisotopes for imaging or therapy
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generated from p–B fusion present a broad energy spectrum that peaks around 4 MeV [1]; 
however, cutoff energies up to 10 MeV have been demonstrated experimentally [2–6]. In 
the last 15 years, p–B fusion has been effectively induced by means of high-power lasers, 
which has reported an impressive progression in the reaction yield [2,4,7,8], thus has 
become a point of interest for the energy sector where it is being considered as an 
alternative approach to conventional inertial confinement fusion schemes [9–11] and also 
potentially for medicine where intense α-particle beams can be used for radioisotope 
production [12]. However, an extensive systematic investigation of laser-based p–B fusion 
of the deep understanding of the underpinning physics is still missing [13]. An overview 
of the recent experimental progression in p–B fusion in terms of α-particle flux (or flux 
per input laser energy) is shown in Figure 1, both for the “in-target” [2–4,7,14] and 
“pitcher–catcher” geometries [5,6,8,15]. In this work, we show the first experimental 
results of efficient α-particle production from p–B fusion using a PW-class laser in the “in-
target” (i.e., direct irradiation) configuration. The results that were achieved during the 
same campaign in the “pitcher–catcher” geometry have been published elsewhere [5,6]. 

 
Figure 1. The experimental progress in p–B fusion, measured in terms of α-particle production in 
the “in-target” [2–4,7,14] and “pitcher–catcher” [5,6,8,15] geometries. The left-hand scale indicates 
the absolute α-particle flux (particles/sr), while the right-hand scale is normalized to the laser energy 
delivered on target (particles/sr/J). 

2. Materials and Methods 
The relatively short-pulse (2.2 ps) and high-energy (~1.4 kJ) PW-class laser system 

LFEX [16], which was operated at relativistic intensities (~3 × 1019 W/cm2) at the Institute 
of Laser Engineering of the Osaka University (Japan), was focused onto the front surface 
(normal incidence) of a boron nitride (BN) target with a thickness of 0.2 mm. The 
concentration of hydrogen in the sample was a few %, which came from the chemical 
synthesis of the material during the manufacturing process. 

As schematically shown in Figure 2, a Thomson parabola (TP) spectrometer was 
placed in the forward direction along the target normal to monitor the proton/ion plasma 
emission from the target’s rear surface, which was based on an acceleration mechanism 
commonly known as “target normal sheath acceleration” (TNSA) [17]. Protons that were 
accelerated via TNSA at the target’s rear side did not contribute to the generation of α-
particles from p–B fusion; however, the determination of their cutoff energy was 
important to confirm that that particular laser shot was representative of an optimal laser–
plasma coupling (a high laser intensity on the target’s front surface allows the generation 
of electrons with high temperature, also known as “hot electrons”, hence efficient TNSA 
at the target’s rear side and protons with high cutoff energies). Plasma ions were deflected 
by parallel electric and magnetic fields based on their charge-to-mass ratio and were 
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PROBONO

Cost Action CA21128 "PROton BOron Nuclear fusion: from energy 

production to medical applicatiOns” PROBONO –

approved and starting November 2022

üMotivation

üMission

ü Large international collaboration

üBenefits

9



K. Batani, Perspective on research on laser driven proton-boron fusion and applications, 2nd IWPBF, 6h September 2022, Catania /39

Motivation 

& Mission
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COST: Mission and Strategic Priorities

7

European Cooperation in Science & Technology 

Promoting and spreading
excellence

Fostering interdisciplinary research
for breakthrough science

Empowering and retaining young researchers

STRATEGIC
PRIORITIES

VISION

MISSION

Europe’s most
empowering
research
programme

COST provides networking
opportunities for researchers
and innovators in order to
strengthen Europe’s capacity
to address scientific,
technological and societal
challenges

COST Actions

13

AN EFFICIENT NETWORKING TOOL

COST provides funding
for research coordination 
and capacity building 
activities

COST is not funding research 
itself, 
but pooling resources 
and research results
by networking

Memorandum
of Understanding

4 years

Min 7 countries in proposal, 
currently an average 31 countries 
represented in the MC

Research coordination 
and capacity building activities

~ €600,000 over lifetime

Network
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PROBONO: Physics Goals
PHYSICS 

ü Increase of a-particle yield/shot
ü Study possibility of triggering “avalanche” in proton-boron fusion reactions H.Hora, et 

al. Matter and Radiation at Extremes 2, 177 (2017)
ü Consider pB implosion (hybrid approach) (see presentation by Tom Mehlhorn)

New task - radiation losses very high in hydrogen boron plasma – opacity and EOS measurement 
needed

ü Exploring laser-driven high-brightness α-particle sources
ü Which will allow:

• Study the α-particle (ion) stopping power in plasmas W. Cayzac, et al. NATURE 
COMMUNICATIONS, 8:15693 (2017)

• Study self-heating regime induced by the α-particles generated in fusion 
M. Temporal, et al., European Physical Joirnal D, 71, 132 (2017)

• Develop our understanding on low-rate nuclear reactions in plasmas for 
astrophysical research M. Gatu Johnson, et al., Physics of Plasmas 24, 041407 (2017)

• Develop a compact alternative to standard α-particle sources used to produce 
radioisotopes

12



K. Batani, Perspective on research on laser driven proton-boron fusion and applications, 2nd IWPBF, 6h September 2022, Catania /39

PALS laser facility at Prague, Czech Republic in 2022

• Studies of the equation of state (EOS) of boron compounds

• SOP and VISAR system

• Accessible pressure range 10-35 Mbar

 
Fig.	5	a)	Scheme	of	the	experiment.	b)	Scheme	of	the	target.	For	opaque	boron	samples	it	could	be	as	in	the	figure	on	the	

right	(which	replicates	the	target	scheme	used	at	Omega	by	Fratanduono	et	al.	[16]	)	CH	+	Al	substrate	(2mm×2	mm×20µm),	

BN	Parallelepiped	(1.5mm×0.9mm×20µm),	Quartz	Parallelepiped	(1.5mm×0.9mm×20µm).		

	

In all cases the quartz and boron layers must be quite thin (20 μm) because due to the short duration of laser pulse 
the shock pressure is decaying. 

Finally, in the case of opaque boron samples, we could use the scheme of fig. 5b), i.e. the same one used in the work 
by Fratanduono et al. at Omega [14]. This implies a second quartz layer after the boron sample. 
It is clear that all these target schemes and the actual dimension depends on what kind of samples we will be able to 

really purchase or produce. 
 

WORKING PLAN & TIME SCHEDULE 
On the basis of the above discussion, we propose the following shot list. The experiment will be split in two time 
shifts. The first one is aimed at setting up the VISAR configuration and getting preliminary results on shock 
propagation in the base target (10 μm CH + 10 μm Al) for SOP and in targets including quartz for VISAR (10 μm CH 

+ 10 μm Al + 20 μm quartz). Finally, possibly getting some first shots on boron samples. 
The second one is directly centred on obtaining EOS data or B or BN samples. 

1) First part: Check the experimental design 
Setting up the SOP diagnostics and synchronizing it 

Setting up the VISAR diagnostics and synchronizing it 
Getting results on shock propagation in CH/Al targets 

Getting first shots on CH/Al/quartz targets 
Possibly first shots on real samples 
[This part can take one week of PALS laser shots if the VISAR system has been prepared in advance 

(estimation 1 week of work before PALS shots on target)] 
2) Get data for boron and boron nitride samples 

[This part can take one week of PALS laser shots changing laser intensity and target type and acquire EOS 
data for boron and boron nitride] 

 
TOTAL TIME NEEDED: 
3 weeks of which two with PALS laser shots 
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Getting results on shock propagation in CH/Al targets 

Getting first shots on CH/Al/quartz targets 
Possibly first shots on real samples 
[This part can take one week of PALS laser shots if the VISAR system has been prepared in advance 

(estimation 1 week of work before PALS shots on target)] 
2) Get data for boron and boron nitride samples 

[This part can take one week of PALS laser shots changing laser intensity and target type and acquire EOS 
data for boron and boron nitride] 

 
TOTAL TIME NEEDED: 
3 weeks of which two with PALS laser shots 

 

EXPERIMENTAL TEAM MEMBERS 
APPLICANT´S TEAM: 
 
Katarzyna Batani    experiment           katarzyna.batani@ifpilm.pl 
IPPLM, Warsaw   
 

Dimitri Batani     experiment dimitri.batani@u-bordeaux.fr 
University of Bordeaux & HB11 Energy   
 

Didier Raffestin                  experiment didier.raffestin@u-bordeaux 
University of Bordeaux      
 

Philippe Nicolai                  simulations philippe.nicolai@u-bordeaux 
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Figure 4. (a) The proton density map that was calculated by 2D PIC simulations at t = 2.8 ps (i.e., 1.2 
ps after the highest intensity peak entered the highest density part of the target); (b) the proton 
phase space plot at t = 2.1 ps (the proton density is shown in units of plasma critical density); (c) the 
proton energy distribution (px > 0) and α-particle energy distribution at the target’s front side from 
PIC and Monte Carlo simulations, respectively; and (d) the α-particle angular distribution from the 
same simulation run. 

4. Discussion and Conclusions 
The results presented in this work provide the first proof of principle experimental 

demonstration of efficient α-particle generation from p–B fusion using a PW-class laser 
and the “in-target” geometry. The measured α-particle flux was ~1010/sr, thus one order 
of magnitude higher than previous results that were obtained with the same laser param-
eters but in the “pitcher–catcher” geometry [5,6]. This achievement is in line with the ex-
perimental progress in p–B fusion that has been reported in the last 15 years (see Figure 
1) and confirms the advantage of triggering p–B fusion reactions using a direct irradiation 
scheme, at least in terms of α-particle flux [2–4]. A crude estimate of the total α-particle 
generation could be provided under the assumption of quasi-isotropic emission, which 
was based on the fact that the kinetic energy of the accelerated protons was relatively low 
(unlike the pitcher–catcher geometry that was reported in our previous p–B fusion exper-
iment at LFEX [6]), hence there was no substantial momentum transfer from the protons 
to the α-particles. Therefore, under such a rough assumption, the total number of α-par-
ticles (including those particles absorbed inside the thick BN target) was ~1.4 × 1011. How-
ever, despite the high α-particle flux that was experimentally measured, we noted that the 
overall conversion efficiency of the process (laser to α-particle energy) was still low 
(~0.005%). It is worth noting that the α-particle flux that was measured experimentally 
was a clear underestimation of the number of α-particles that were emitted backward due 
to the limited energy range (5-10 MeV) that was detectable by the diagnostics that were 
used. In fact, the numerically predicted α-particle energy range was much broader (1-14 
MeV). Thus, considering the diagnostic limitations, we could expect a produced α-particle 
flux and conversion efficiency in line with the previous results that were reported in [4] 
with a kJ (TW-class) laser and in-target geometry (see Figure 1). Nevertheless, the start-
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A B S T R A C T

The internal α-particle beam of the Warsaw Heavy Ion Cyclotron was used to produce research quantities of the
medically interesting Sc radioisotopes from natural Ca and K and isotopically enriched 42Ca targets. The targets
were made of metallic calcium, calcium carbonate and potassium chloride. New data on the production yields
and impurities generated during the target irradiations are presented for the positron emitters 43Sc, 44 gSc and
44 mSc. The different paths for the production of the long lived 44 mSc/44 gSc in vivo generator, proposed by the
ARRONAX team, using proton and deuteron beams as well as alpha-particle beams are discussed. Due to the
larger angular momentum transfer in the formation of the compound nucleus in the case of the alpha particle
induced reactions, the isomeric ratio of 44 mSc/44 gSc at a bombarding energy of 29 MeV is five times larger than
previously determined for a deuteron beam and twenty times larger than for proton induced reactions on
enriched CaCO3 targets. Therefore, formation of this generator via the alpha-particle route seems a very
attractive way to form these isotopes. The experimental data presented here are compared with theoretical
predictions made using the EMPIRE evaporation code. Reasonable agreement is generally observed.

1. Introduction

Recently, there has been steadily growing interest in the medical
applications of Sc radioisotopes. The longer half-life of the scandium β+

emitters, 44 gSc and 43Sc (T1/2=3.97 h and T1/2=3.89 h, respectively),
compared to that of other PET radioisotopes like 18F (T1/2=109.8 min),
68Ga (T1/2=67.7 min), 60Cu (T1/2=23.7 min), 11C (T1/2=20.3 min), 13N
(T1/2=10.0 min), 15O (T1/2=122.2 s), potentially permits their regional
distribution following production at a single central cyclotron facility.
Other diagnostic radioisotopes that could be made at a central facility
are 61Cu (T1/2=3.3 h), 64Cu (T1/2=12.7 h), 76Br (T1/2=16.2 h), 89Zr (T1/

2=78.4 h) and 124I (T1/2=4.2 d) but, with the exception of 61Cu, all have
a positron branch lower than 30%.

Another advantage in the use of Sc as a diagnostic radioisotope lies
in the other scandium radioisotope, i.e. 47Sc (T1/2=3.35 d) which is a
promising low-energy β- emitter for targeted radiotherapy and there-
fore represents an ideal theranostic pair (Del Vecchio et al., 2007;
Baum and Kulkarni, 2012; Verburg et al., 2014; Wright et al., 2015) for
the β+ emitting 44Sc or 43Sc radioisotopes.

The accelerator production routes using proton induced nuclear

reactions for the formation of the Sc positron emitters were recently
investigated in a number of papers (Krajewski et al., 2012, 2013;
Severin et al., 2012; Müller et al., 2013, 2014; Hoehr et al., 2014;
Hernandez et al., 2014; van der Meulen et al., 2015; Valdovinos et al.,
2015) where natural and isotopically enriched Ca targets were dis-
cussed. Besides the “classic” Positron Emission Tomography (PET)
application of 43Sc and 44Sc, the latter isotope has also been proposed
as an ideal candidate for the new method of three photon PET
(Mausner et al., 1998; Grignon et al., 2007; Müller et al., 2014;
Thirlof et al., 2015), a method substantially improving the spatial
resolution of PET techniques and allowing for patient dose reduction
(Lang et al., 2013).

Similarly, deuteron beams were recently used (Huclier-Markai
et al., 2014; Alliot et al., 2015a, 2015b; Duchemin et al., 2015) for
the production of the 44 m,gSc isomeric pair by the ARRONAX group. In
this case the heavier mass of the projectile substantially increased the
production efficiency of the high spin, longer lived isomeric state of
44Sc in comparison with the ground state production.

In spite of the fact that some Sc β+ emitters were already produced
by the E.O. Lawrence cyclotron in 1937 using an 11 MeV alpha-particle
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a-yield achieved in laser experiments

In order to be competitive, we need:
i) use a new generation of 100 Hz laser systems
ii) increase the a-yield of at least 1 order of 

magnitude

Laser experiments show a maximum of 
1011 a/sr/shot. 

PROBONO: Medical application

16

Recently radioisotopes produced by 

Large Heavy Ion Cyclotron systems

(ARRONAX or U-120M).

10 μA of a-particles ≈ 1014 a/s 

(for instance, ARRONAX produces 2×375 μA
protons but only 70 μA of a-particles)
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generated from p–B fusion present a broad energy spectrum that peaks around 4 MeV [1]; 
however, cutoff energies up to 10 MeV have been demonstrated experimentally [2–6]. In 
the last 15 years, p–B fusion has been effectively induced by means of high-power lasers, 
which has reported an impressive progression in the reaction yield [2,4,7,8], thus has 
become a point of interest for the energy sector where it is being considered as an 
alternative approach to conventional inertial confinement fusion schemes [9–11] and also 
potentially for medicine where intense α-particle beams can be used for radioisotope 
production [12]. However, an extensive systematic investigation of laser-based p–B fusion 
of the deep understanding of the underpinning physics is still missing [13]. An overview 
of the recent experimental progression in p–B fusion in terms of α-particle flux (or flux 
per input laser energy) is shown in Figure 1, both for the “in-target” [2–4,7,14] and 
“pitcher–catcher” geometries [5,6,8,15]. In this work, we show the first experimental 
results of efficient α-particle production from p–B fusion using a PW-class laser in the “in-
target” (i.e., direct irradiation) configuration. The results that were achieved during the 
same campaign in the “pitcher–catcher” geometry have been published elsewhere [5,6]. 

 
Figure 1. The experimental progress in p–B fusion, measured in terms of α-particle production in 
the “in-target” [2–4,7,14] and “pitcher–catcher” [5,6,8,15] geometries. The left-hand scale indicates 
the absolute α-particle flux (particles/sr), while the right-hand scale is normalized to the laser energy 
delivered on target (particles/sr/J). 

2. Materials and Methods 
The relatively short-pulse (2.2 ps) and high-energy (~1.4 kJ) PW-class laser system 

LFEX [16], which was operated at relativistic intensities (~3 × 1019 W/cm2) at the Institute 
of Laser Engineering of the Osaka University (Japan), was focused onto the front surface 
(normal incidence) of a boron nitride (BN) target with a thickness of 0.2 mm. The 
concentration of hydrogen in the sample was a few %, which came from the chemical 
synthesis of the material during the manufacturing process. 

As schematically shown in Figure 2, a Thomson parabola (TP) spectrometer was 
placed in the forward direction along the target normal to monitor the proton/ion plasma 
emission from the target’s rear surface, which was based on an acceleration mechanism 
commonly known as “target normal sheath acceleration” (TNSA) [17]. Protons that were 
accelerated via TNSA at the target’s rear side did not contribute to the generation of α-
particles from p–B fusion; however, the determination of their cutoff energy was 
important to confirm that that particular laser shot was representative of an optimal laser–
plasma coupling (a high laser intensity on the target’s front surface allows the generation 
of electrons with high temperature, also known as “hot electrons”, hence efficient TNSA 
at the target’s rear side and protons with high cutoff energies). Plasma ions were deflected 
by parallel electric and magnetic fields based on their charge-to-mass ratio and were 
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ü Develop new diagnostics for better characterization of a-particle generation
ü Develop high repetition rate (HRR) diagnostics
ü Use new approaches to the analysis of data (i.e. machine learning…)

PROBONO: Diagnostics

17
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PROBONO: Targetry
TARGETRY

ü Develop new targets increasing a-particle production

ü Develop new holders containing many targets assuring precise positioning 

easy to align (HRR)

ü Avoiding/shielding target debris after each shot 

18

See presentation by Edmond Turcu, and by Andrey Shukurov

Examples of multiple target 
holders used at
PALS

CLPU 
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Structure

https://www.cost.eu/actions/CA21128
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Training and Dissemination

MEANS and MATERIAL

ü Scientific papers, 

ü Workshops, 

ü Seminars

ü Informative videos, 

ü Press releases, 

ü Website, 

ü Profiles in social media 

• Researchers

• Industry

• Citizens

TARGET PUBLIC

ü Researchers

ü Industry

ü Citizens

ü Politicians
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PROBONO: Aims
CAPACITY BULDING

ü Exchange of knowledge and building collaborations

ü Facilitating access to large laser facilities

ü Fostering opportunities for training and boosting the careers of young

researchers, involving underrepresented groups, gender, and researchers

from countries/regions with less capacity or support in the field.
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Facilities
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Laser Installations
ü Prague Asterix Laser System (PALS) in Czech Republic

ü LFEX laser facility at the University of Osaka in Japan

ü VEGA at CLPU (Centro de Láseres Pulsados) in Spain

ü LOA and CELIA laboratories in France

ü Vulcan facility at Rutherford Appleton Laboratory in the UK

ü TARANIS laser at Queens University Belfast (UK), 

ü PHELIX laser at GSI Darmstadt (Germany), 

ü ABC laser at ENEA Centro Ricerche Frascati (Italy),

ü Zeus laser facility at HMU/IPPL in Greece

ü Extreme Light Infrastructure (ELI) in Hungary, Romania and the Czech Republic

These systems differ in energies, peak intensity, pulse duration, so that the researchers will be

able to access different plasma regimes. Also, they offer various diagnostics, probing capabilities

and repetition rate regimes.

31



K. Batani, Perspective on research on laser driven proton-boron fusion and applications, 2nd IWPBF, 6h September 2022, Catania /39

Summary of experimental results

Generation of transient very strong shocks by 
fs-Lasers

CLPU, Salamanca, Spain

PI: Dimitri Batani
Local PI: Sophia Malko, Luca Volpe

Centro de Láseres Pulsados. Edificio M5. Parque Científico de la USAL. c/ Adaja, 8. 37185 Villamayor de la Armuña. Salamanca

ü E = 3 J
ü 10 Hz
ü t = 30 fs
ü l = 810 nm
ü spot ≤ 10 µm
ü I ~ 1020 W/cm2

ü Contrast 3 10-10

CLPU VEGA II 
LASER (Ti:Sa)
100 TW

CLPU VEGA III 
LASER (Ti:Sa)
1 PW

Laser Parameters
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The PALS Iodine Laser
ü l =1.3 µm
ü t = 300 ps
ü E = 1500 J
ü 3w   l =0.44 µm E ≤ 500 J

Laser Parameters
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PALS laser facility at Prague, Czech Republic in 2022

Studies of the Equation Of State (EOS) 

PROBONO: Physics Goals

34

Laser experiments show a maximum of 
1011 a/sr/shot. 

 
Fig.	5	a)	Scheme	of	the	experiment.	b)	Scheme	of	the	target.	For	opaque	boron	samples	it	could	be	as	in	the	figure	on	the	

right	(which	replicates	the	target	scheme	used	at	Omega	by	Fratanduono	et	al.	[16]	)	CH	+	Al	substrate	(2mm×2	mm×20µm),	

BN	Parallelepiped	(1.5mm×0.9mm×20µm),	Quartz	Parallelepiped	(1.5mm×0.9mm×20µm).		

	

In all cases the quartz and boron layers must be quite thin (20 μm) because due to the short duration of laser pulse 
the shock pressure is decaying. 

Finally, in the case of opaque boron samples, we could use the scheme of fig. 5b), i.e. the same one used in the work 
by Fratanduono et al. at Omega [14]. This implies a second quartz layer after the boron sample. 
It is clear that all these target schemes and the actual dimension depends on what kind of samples we will be able to 

really purchase or produce. 
 

WORKING PLAN & TIME SCHEDULE 
On the basis of the above discussion, we propose the following shot list. The experiment will be split in two time 
shifts. The first one is aimed at setting up the VISAR configuration and getting preliminary results on shock 
propagation in the base target (10 μm CH + 10 μm Al) for SOP and in targets including quartz for VISAR (10 μm CH 

+ 10 μm Al + 20 μm quartz). Finally, possibly getting some first shots on boron samples. 
The second one is directly centred on obtaining EOS data or B or BN samples. 

1) First part: Check the experimental design 
Setting up the SOP diagnostics and synchronizing it 

Setting up the VISAR diagnostics and synchronizing it 
Getting results on shock propagation in CH/Al targets 

Getting first shots on CH/Al/quartz targets 
Possibly first shots on real samples 
[This part can take one week of PALS laser shots if the VISAR system has been prepared in advance 

(estimation 1 week of work before PALS shots on target)] 
2) Get data for boron and boron nitride samples 

[This part can take one week of PALS laser shots changing laser intensity and target type and acquire EOS 
data for boron and boron nitride] 

 
TOTAL TIME NEEDED: 
3 weeks of which two with PALS laser shots 

 

EXPERIMENTAL TEAM MEMBERS 
APPLICANT´S TEAM: 
 
Katarzyna Batani    experiment           katarzyna.batani@ifpilm.pl 
IPPLM, Warsaw   
 

Dimitri Batani     experiment dimitri.batani@u-bordeaux.fr 
University of Bordeaux & HB11 Energy   
 

Didier Raffestin                  experiment didier.raffestin@u-bordeaux 
University of Bordeaux      
 

Philippe Nicolai                  simulations philippe.nicolai@u-bordeaux 
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generated from p–B fusion present a broad energy spectrum that peaks around 4 MeV [1]; 
however, cutoff energies up to 10 MeV have been demonstrated experimentally [2–6]. In 
the last 15 years, p–B fusion has been effectively induced by means of high-power lasers, 
which has reported an impressive progression in the reaction yield [2,4,7,8], thus has 
become a point of interest for the energy sector where it is being considered as an 
alternative approach to conventional inertial confinement fusion schemes [9–11] and also 
potentially for medicine where intense α-particle beams can be used for radioisotope 
production [12]. However, an extensive systematic investigation of laser-based p–B fusion 
of the deep understanding of the underpinning physics is still missing [13]. An overview 
of the recent experimental progression in p–B fusion in terms of α-particle flux (or flux 
per input laser energy) is shown in Figure 1, both for the “in-target” [2–4,7,14] and 
“pitcher–catcher” geometries [5,6,8,15]. In this work, we show the first experimental 
results of efficient α-particle production from p–B fusion using a PW-class laser in the “in-
target” (i.e., direct irradiation) configuration. The results that were achieved during the 
same campaign in the “pitcher–catcher” geometry have been published elsewhere [5,6]. 

 
Figure 1. The experimental progress in p–B fusion, measured in terms of α-particle production in 
the “in-target” [2–4,7,14] and “pitcher–catcher” [5,6,8,15] geometries. The left-hand scale indicates 
the absolute α-particle flux (particles/sr), while the right-hand scale is normalized to the laser energy 
delivered on target (particles/sr/J). 

2. Materials and Methods 
The relatively short-pulse (2.2 ps) and high-energy (~1.4 kJ) PW-class laser system 

LFEX [16], which was operated at relativistic intensities (~3 × 1019 W/cm2) at the Institute 
of Laser Engineering of the Osaka University (Japan), was focused onto the front surface 
(normal incidence) of a boron nitride (BN) target with a thickness of 0.2 mm. The 
concentration of hydrogen in the sample was a few %, which came from the chemical 
synthesis of the material during the manufacturing process. 

As schematically shown in Figure 2, a Thomson parabola (TP) spectrometer was 
placed in the forward direction along the target normal to monitor the proton/ion plasma 
emission from the target’s rear surface, which was based on an acceleration mechanism 
commonly known as “target normal sheath acceleration” (TNSA) [17]. Protons that were 
accelerated via TNSA at the target’s rear side did not contribute to the generation of α-
particles from p–B fusion; however, the determination of their cutoff energy was 
important to confirm that that particular laser shot was representative of an optimal laser–
plasma coupling (a high laser intensity on the target’s front surface allows the generation 
of electrons with high temperature, also known as “hot electrons”, hence efficient TNSA 
at the target’s rear side and protons with high cutoff energies). Plasma ions were deflected 
by parallel electric and magnetic fields based on their charge-to-mass ratio and were 
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Benefits
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Benefits

COST support beyond the COST Action  

11

Meetings, workshops  
conferences, 

and conference grants 

Training 
schools 

Short-term
scientific missions 

Dissemination
activities 

COST ACTIONS

Virtual networking 
grants 

COST 
science-informed

policy advice
COST

Academy
COST

Innovators
Grant

COST global
networking

COST
Connect

Leadership WS
Finance / Admin WS
Science Com. Training
Action Chairs Forum
Grant Holders Forum
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Conclusions

ü The COST project PROBONO is a first opportunity to structure the reserach on proton 

boron fusion and its application at he European (and international) level.

ü It is a good framework for collaboration of academic reserach groups with the 

industries and companies:

ü Those working on lasers (e.g. Thales), targetry and diagnostics (e.g. SourceLab)

ü Those addressing research in Fusion (e.g. HB11, …)

ü Participation is open to all interested research groups (application via website)

https://www.cost.eu/actions/CA21128
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"This scientific presentation has been presented as part of the international project called
'PMW', co-financed by the Polish Ministry of Science and Higher Education within the
framework of the scientific financial resources for 2022 -2023 under the contract no
5256/PALS/2022/0".
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Thank you!
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