

Use of alpha particle beams in medical radionuclide production

Juan Esposito (INFN-LNL)*

A. Boschi (2), S. Cisternino (1), P. Martini (2), L. Mou (1), G. Pupillo (1), G. Sciacca (1)

1. INFN, Legnaro National Laboratories, Legnaro (Padua), Italy,

2. Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Italy

*Researcher at the INFN-LNL , LARAMED project manager

2nd International Workshop on Proton-Boron Fusion (IWPBF)- Catania, Italy - Sept 05-08, 2022

- Quick recall about the use of α beams in industry
- Use of α beams in radionuclides' (RNs) production in Nuclear Medicine (NM)
- Some key facts about RNs for NM
- The RNs world market for NM
- Established/emerging RNs production pathways for NM
- The LARAMED project INFN LNL
- Some examples of RNs produced by alternative (α , X) nuclear reaction routes
- Main requirement for a laser-driven (p-11B) ->3 α source for RNs production for NM

Brief recall about the use of α beams in industry

The use of α -particles beams from a few MeV up to 25/30 MeV, has found valuable applications in the last decades in many fields, ranging from material characterization analyses up to some manufacturing process in the industrial sector:

- 1. Ion Beam Analyses (IBA) \rightarrow RBS, ERDA, PIXE PIGE.....
- 2. New materials (i.e., composite ones) development →, resistance/hardness performance modifications in micro-nano structured materials that have application in different sectors, like electronics, optics, aerospace, etc.
- **3.** Nuclear industry \rightarrow high damage level in the lattice of structural materials receiving high neutron fluence levels ($\geq 10^{18} \text{ cm}^{-2}$), located:
 - a. close to core in fission fast nuclear reactors;
- b. in the blanket region of future (e.g. ITER/DEMO) fusion power reactors, caused by $(n,x\alpha)$ reaction routes \rightarrow , large productions of helium gas. These processes are still very little known.

Accelerators (or alternative sources) able to provide 20 MeV or larger α -particle beams with nA up to mA intensities may allow to conduct such studies.

Zone depleted of cavities

Other potential use of α -beams: emerging radionuclides (RNs) production for Nuclear Medicine (NM) applications

- The new frontier of NM is the "theranostic approach", i.e. RNs combining properties specific for imaging and those for radiotherapy (e.g. local tumors treatment) by using a single radiopharmaceutical product.
- The most important theranostic RNs known nowadays, i.e. having a nuclear decay pattern suitable for both applications are ⁴⁷Sc, ⁶⁷Cu, ⁶⁴Cu, ⁶⁷Ga...others...still to be found

THERAPY (+ DIAGNOSTIC) = THERANOSTIC

The theranostic approach may be also obtained with "theranostic pair" i.e. Isotopic RNs, one specific for imaging, while the other one for therapy. The most known pairs belonging to this group are ^{43/44}Sc/⁴⁷Sc, ^{61/64}Cu/⁶⁷Cu, ⁶⁸Ga/⁶⁷Ga, ^{149/152}Tb/^{155/161}Tb and others ...still to be found

Radionuclides & Radiopharmaceuticals: the essential probes in NM

The new scanner technology of hybrid tomograph

tituto Nazionale di Fisica Nuel

NM procedures in the world: some reference data (pre COVID-19 yrs)

- In recent years (2018-2019) there have been about **40 MILLION clinical procedures in the world** making use of radionuclides (about 13 every 10 seconds!!).
 - The demand for RNs in NM is growing at a rate ~ 5% every year.
 - The use of **radionuclides for imaging/diagnostic** grows by an average of **10% every year.**
 - In the USA more than **20 million procedures** are conducted per year while in the **EU there are about 10 million and in Australia, 560,000**.

Source: WORLD NUCLEAR ASSOCIATION (https://world-nuclear.org) TECHNOPOLIS GROUP (https://www.technopolis-group.com/)

MEDraysintell (https://www.medraysintell.com/)

trend (pre-Covid 19) of 5-7% (2016 data).

Growth is estimated between 14 – 26 Billion US\$ in 2030

Trends in the search for new PET radionuclides: some reference data (pre COVID-19 yrs)

The expected growth rate (CAGR) for the use of PET radionuclides in the coming years is of the order of 5% (2019 estimate)

Fonte:

WORLD NUCLEAR ASSOCIATION (<u>https://world-nuclear.org</u>) TECHNOPOLIS GROUP (<u>https://www.technopolis-group.com/</u>) MEDraysintell (<u>https://www.medraysintell.com/</u>)

 Trends in publications in the last 20 years (2000-2020) regarding the clinical and research uses of PET radionuclides:

PubMED search engine (Sept. 2022)

Search criteria (e.g. Ga68): Search query: (68 Ga) OR (Ga 68) OR (68Ga) OR (Ga68) OR (68-Ga) OR (Ga-68) OR (68-Gallium) OR (Gallium-68)

Radionuclides used in Nuclear Medicine

Gamma-Emitting Radionuclides

Isotope	Half-life (hours)	Decay Mode*	production
Tc-99m	6.0	IT	generator
I-123	13.0	EC	cyclotron
TI-201	73.5	EC	cyclotron
In-111	67.3	EC	cyclotron
Ga–67	78.3	EC	cyclotron

Alpha-Emitting Radionuclides

Radionuclide	Half-life	α Decay Energy (keV)	γ Decays Energy (keV)	
Tb-149	4.12 min	4077	(β+) 352	
At-2111	7.21 h	5867	79	
Bi-212	60.6 min	8785	727	
Bi-213	45.7 min	8378	440	
Ra-223	11.4 d	5348	269	
Ra-224	3.62 d	5094	241	
Ac-225	10.0 d	5450	86	
Th-226	30.9 min	6338	111	
Th-227	18.7 d	5562	236	
Fm-255	20.1 h	7022	16	

Positron-Emitting Radionuclides

Isotope	Half-life	Max. Energy	range(mm)	production
C-11	20.4 mins	0.96 MeV	0.4 mm	cyclotron
N-13	9.96 mins	1.20 MeV	0.7 mm	cyclotron
O–15	123 secs	1.74 MeV	1.1 mm	cyclotron
F-18	110 mins	0.63 MeV	0.3 mm	cyclotron
Cu–62	9.74 mins	2.93 MeV	2.7 mm	generator
Cu-64	12.7 hours	0.65 MeV	0.3 mm	cyclotron
Ga–68	68.3 mins	1.83 MeV	1.2 mm	generator
Br-76	16.1 mins	1.90 MeV	1.2 mm	cyclotron
Rb-82	78 secs	3.15 MeV	2.8 mm	generator
I-124	4.18 days	1.50 MeV	0.9 mm	cyclotron

β -emitting Radionuclides

Radionuclide	Half-life	Mode of decay	E _{βmax} (keV)
⁹⁰ Y	64.00 h	β-	2280.1
131	8.02 d	β⁻, γ	970.8
¹⁵³ Sm	46.28 h	β-, γ	808.4
⁸⁹ Sr	50.53 d	β-	1496.6
¹⁷⁷ Lu	6.73 d	β⁻, γ	498.3
¹⁸⁸ Re	16.98 h	β⁻, γ	2120.4
¹⁸⁶ Re	3.72 d	β⁻, γ	1069.5
³² P	14.26 d	β ⁻	1709.0

Some key points about established/emerging RNs production for NM

- <u>Most of RNs nowadays used in NM</u> are massively produced by using nuclear reactors (e.g., Mo99/Tc99m generators, the most used radionuclide worldwide).
- Particles accelerators (p,d,alpha), e.g.cyclotrons/linacs (or e-linacs producing a γ-source) are becoming the alternative supplying route of choice. (in some cases, the only way). Not only for already established RNs, but also for the new emerging RNs.
- To select the optimal RNs' production pathway, it is mandatory to probe all the possible nuclear reaction routes (xs measurements) and determine the full map of isotopic. contaminants.
- For most of them optimal production routes still needs to be cleared/investigated.

Production of established/ emerging RNs in NM (some examples)

Most accelerator-based radionuclides are nowadays, produced by public/private facilities by using **proton beams**:

 large network of low-energy Small Medical Cyclotrons (SMC) (Ep<20 MeV) based upon the well-established H- ion source technology (100% efficiency extraction by using stripper foils)

→ e.g. ACSI TR19/300 Sacro Cuore Don Calabria Hospital (Negrar, VR) or IBA 18/9 (e.g. LENA, Pavia, Italy);

- some **mid-energy p,d,(** α **)** cyclotrons (i.e. Ep 20-35 MeV) \rightarrow e.g **IBA Cyclone -30**, Kolkata Research Center, India;
- a few **high-energy p,d,(α)** cyclotrons (i.e. Ep>35 MeV) → e.g. ARRONAX (France), ZEVACOR (Us), LARAMED (Italy)

Protons: 14-19 MeV, >300 μA (up to ~6 kW) Possible dual particle accelerations Radiopharmacy and cyclotron unit Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy

The Cyclone-30 (15-30 MeV, 350µA max) isotope-producing cyclotron, Kolkata-based VECC India

The BEST BCSI 70p: dual exit port cyclotron,

- H⁻ 35-70 MeV, 750μA max
- D⁻ future installation
- ⁴He²⁺ future installation

SPES/LARAMED facility, Legnaro (Padua), Italy

The IBA Cyclone-70: dual exit port

- H⁻ 30-70 MeV, 750μA max
- D⁻ 15-35 MeV 50μA max
- ⁴He²⁺ 70 MeV 35µA max

isotope-producing cyclotron, ARRONAX, Nantes, France

The new research infrastructure SPES@LNL: Selective Production of Exotic (nuclear) Species

The SPES/ LARAMED infrastructure status (work in progress....)

The LARAMED project at INFN-LNL

The BCSI 70p, p-cyclotron (35-70 MeV, 750μA) Research and technological development for innovative radionuclide dual exit port cyclotron **DIRECT** technology LAboratory of Radionuclides for **MED**icine Radioisotopes research area rabbit 5 a& abs RILAB chemistry / targetry labs SPES project Nuclear Physics research activities Š **RILAB** radiochemistry lab Esposito et al., LARAMED: A Laboratory for Radioisotopes of medical

interest, Molecules 2019

LARAMED : the radionuclides direct production route...

Current radionuclides under the spotlight of LARAMED project

Accelerated α -beams: a new route for emerging RNs production for NM

Main advantages/drawbacks of RNs produced by α -beams

- Some RNs may be produced **only via** *α*-**particle induced reactions**;
- The Z of RNs produced is often +2 units than the target nuclide → chemical separation more specific and the product can be obtained with very high radiochemical and chemical purity (mainly for radiometals);
- The cross sections of some α-induced reaction routes: (α,xn), (α,p), (α,d), (α,t) etc. are in general higher or camparable vs. p/d route , mainly for the light and medium mass target nuclei.
- Thick Target Yield (TTY) = $\frac{N_A H}{M} \frac{I}{Ze} \left(1 e^{-\lambda t}\right) \int_{E_1}^{E_2} \left(\frac{dE}{d(\rho x)}\right)^{-1} \sigma(E) dE$, due to (α, x) nuclear reaction routes are however lower than those using protons / deuterons, due to the quite larger α stopping power in materials

The example of the positron-emitter ⁷³Se for PET

Thick target yields of calculated by the excitation functions of

- ⁷⁵As(p,3n)⁷³Se
- ⁷⁵As(d,4n)⁷³Se
- ⁷²Ge(3He,2n)⁷³Se
- 70 Ge(α ,n) 73 Se

Main issues of RNs produced by α -beams: need of a high intensity source

- to get RNs yields comparable to those to produce by p/d beams therefore necessary to improve the αparticle beam-on-target to the order of 500-1000 μA (i.e. ~ 3E+15 - 6E+15 α/s);
- α-particles may be accelerated **only as positive ions** and the extraction process is more challenging.
- The use of **cyclotron for alpha particles** has an intensity limitation (mainly related to the extraction system) e.g.:
 - The IBA 70-30 MeV @ARRONAX (Nantes) is limited to 35 microA only
 - The BCSI 70-35 MeV @ LNL (SPES/LARAMED) only allows proton acceleration (optimized).
- The new technology now available for linacs DTL (ECRIS Sources), allows, better than cyclotrons, to supply up to some tens MeV α-particles beams with at least 1 mA intensity.
- With the availability of high-performance linacs able to drive α beams, the production routes for wellestablished as well as emerging RNs may be re-investigated.
- The quality of the final product strongly depends on the chosen target/projectile/energy parameters set (e.g., ⁶⁷Cu, ⁴⁷Sc, ¹⁰³Pd, ¹⁸⁶Re, ⁹⁷Ru and ²¹¹At......)

RNs produced by different (p,d, X) routes and corresponding (α , X) ones: Some examples

RNs produced by different (p,d, X) routes and corresponding (α , X) ones: Some examples

⁹⁹Mo ->^{99m}Tc generator

(the most used RNs in the world for 50+ yrs allowing SPECT imaging)

Innovative accelerator-based production routes for ⁹⁹Mo (and ^{99m}Tc) comparing the ¹⁰⁰Mo(p,x)⁹⁹Mo and ⁹⁶Zr(α ,n)⁹⁹Mo reactions

RNs produced by different (p,d, X) routes and corresponding (α , X) ones: Some examples

²¹¹AS ($T_{1/2} = 7.2 \text{ hr}$) -> α particle emitter (very attractive radioisotope for cancer treatment). Mainly produced by ²⁰⁹Bi(α ,2n)²¹¹At route in few GBq quantities

Major concern: main contaminant ²¹⁰At that has to be minimized due to its decay product Po-210 which is an alpha emitter and binds chemically to the bone marrow E. J. Prebys*, W. H. Casey, D. A. Cebra, R. J. Abergel, *Development Of Astatine-211*

Production cross-section as a function of beam energy for (a) $^{209}Bi(\alpha,2n)^{211}At$ and (b) $^{209}Bi(\alpha,3n)^{210}At$.

State of the art and background experience on emerging ^{64/67}Cu radiometals

Cu-67 ($T_{1/2} \cong 62$ hrs) **promising radionuclide** for **Theranostic and Radio Immuno Therapy (RIT) applications,** as single isotope, or in pair with ⁶⁴Cu ($\beta^{+/-}$ emitter, $T_{1/2}$ =12.7 h). Drug Discovery Today • Volume 23, Number 8 • April 2018

- ⁶⁴Cu is ALREADY used in nuclear medicine for PET diagnostic procedures
- ⁶⁴Cu seems to provide excellent results also in THERAPY for brain tumors

What will it happen by using ⁶⁷Cu?

- o ⁶⁷Cu's limiting factor: Still lacking a **REGULAR availability worldwide**
- Only recently become available in US in enough quantities for **medical research** applications (DOE-IP)
- Production capability upon request @ ANL-LEAF via ⁶⁸Zn(y,p) nuclear reaction (BNL through the ⁶⁸Zn(p,2p)
- $\circ \rightarrow {}^{67}$ Cu future supply in Europe: Goal both for ARRONAX and LARAMED!!!

Theranostic = Therapy + Diagnostic

		THERAPY				
Cu-67	γ-ray	γ-ray	β energy	β int	Auger	Auger
61.83 h	[keV] SPE	[%]	[keV]	[%]	[keV]	[%]
β- : 100 %	184.6	48.7	51	1.1	0.99	19.14
(Zn-67)	209.0 0.115		121	57	7.53	6.87
	300.2	300.2 0.797		22.0	83.65	12.09
	393.5	0.220	189	20.0	Mean β- :	141 keV

2nd IWPBF, September 8, 2022 – Juan Esposition State and State a cite this article in press as Boschi A et al. The emerging role of conner-64 radionha

Teaser Copper radioisotopes are emerging as potent tools for developing unprecedented clinical approaches for cancer treatment by exploiting the intrinsic <u>biological properties</u> of ionic copper and the richness of copper chemistry.

The emerging role of copper-64 radiopharmaceuticals as cancer theranostics

Alessandra Boschi¹, Petra Martini¹, Emilija Janevik-Ivanovska² and Adriano Duatti³

Department of Morphology, Surgical and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy ² Faculty of Medical Sciences, University 'Goce Delčev', Štip, Republic of Macedonia ³ Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy

Copper radionuclides are rapidly emerging as potential diagnostic and therapeutic tools in oncology, particularly ⁶⁴Cu-radiopharmaceuticals for targeting neuroendocrine, prostate, and hypoxic tumors. Unexpectedly, experimental results are also revealing the impressive biological behavior of simple [64Cu2+] ions. For example, it has been demonstrated that administration of ionic [⁶⁴Cu²⁺] in physiological solution allows the selective targeting of a variety of malignancies. These remarkable biological properties appear to be crucially linked to the natural role of copper ions in cell proliferation. Here, we review the current status of ⁶⁴Cu-radiopharmaceuticals in molecular imaging and cancer therapy.

the production of novel rad development of automated methods for target processin separation, and purification of radionuclides from cyclot radiated arges.

Directorate for the Quality of Medicines. Her broad

esearch interests range from radiolabeling of peptides

ntibodies to the development of molecular imaging agents abeled with positron-emitting radionuclides and radionuclide therapy. She is also involved in various exper

Positron Emi

Emilija Janevik-Ivanovski is currendy a professor in pharmaceutical chemistry and technology at the University of Stip. She is also the director of the University Institute for Tomography in Skopje. She i so expert consultant to the ternational Atomic Energy Agency and the Europe

Introduction

Molecular imaging [1-6] is a fascinating concept that has deeply influenced modern diagnostic imaging and therapy. However, its definition is rather vague and does not fully meet the strict requirements of a rigorous scientific concept, resulting in an ongoing lengthy debate. In an attempt to develop a definition that includes its most relevant characteristics, the Society of Nuclear Medicine and Molecular Imaging (SNMMI) proposed the following statement: 'Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems' [6].

Some ambitious interpretation entails that the meaning of the term 'molecular' should be interpreted as the level of spatial resolution that can be attained by methods used for imaging biomolecules in living systems. Only when the same atomic-scale resolution typical of structural chemistry is achieved can the molecular attribute be applied. However, this result is still beyond reach because there is no available imaging technology capable of truly detecting single molecules in living tissues with atomic resolution.

Another interpretation suggests that molecular imaging corresponds to mapping the distribution and activity of molecules in living tissues. This description is linked to the concept of a molecular imaging agent that is defined as a 'probe' used to visualize, characterize, and measure

Corresponding author

of innovative and nonstandard radionuclides for medical applications using a high-energy (70 MeV) and high-curren (800 microA) cyclotron. He is also a radiopharmaceutical consultant to the Italian Ministry of Health. He has also orked at the International Atomic Energy in Vienna Austria in the Radioisotope Products and Radiation echnology Section. His main research interests focus

maging, and targeted radionudide therapy

project at the INFN Legnary

National Laboratories, which a

RNs produced by different (p,d, X) routes and corresponding (α , X) beams: Some examples

⁶⁷Cu ($T_{1/2}$ =61.83 hr) -> β⁻ /γ decay (under the spotlight of international community. May be used both for therapy and associated diagnostic applications. A very promising theranostic radionuclide.

Produced in almost pure form (but limited amount) with the ${}^{70}Zn(p,\alpha){}^{67}Cu$ or ${}^{70}Zn(d,\alpha){}^{67}Cu$ in selected energy ranges by p/d beams. An alternative interesting route is ${}^{64}Ni(\alpha,p){}^{67}Cu$ on highly enriched (>99%) ${}^{64}Ni$ targets

Table 2: 67 Cu and 64 Cu production yields obtained by using proton, deuteron and α -beams on 70 Zn, 68 Zn, and 64 Ni enriched target materials assuming I = 30 μ A and T_{irr} = 24 h.

Beam	Target	Energy range (MeV)	Thickness (mm)	⁶⁷ Cu at EOB(GBq)	
Protons	⁷⁰ Zn	25-10	1.22	3.0	-
	⁶⁸ Zn	70-35	6.43	17.5	150
	⁷⁰ Zn	68-45	4.61	22.2	140
Deuterons	⁷⁰ Zn	26-13	0.68	4.3	-
Alpha	⁶⁴ Ni	30-0	0.15	1.0	-

Fig 4. Experimental cross sections of the $64Ni(\alpha,p)67Cu$ reaction in comparison with the earlier experimental works.

S.Takácsa, M.Aikawab, H.Habac, Y.Komoric, F.Ditrói Z. Szűcs, M.Saito, T. Murata, M. Sakaguchi, N. Ukona, *Cross sections of alpha-particle induced reactions on natNi: Production of 67Cu*, Nucl. Inst. Meth 479 (2020) 125-136.

Figure 2: ⁶⁷Cu production cross sections induced by deuteron and proton beams on ⁷⁰Zn targets.

G.Pupillo, S. Manenti, F.Groppi, J.Esposito, F.Haddad, *Nuclear* data for light charged particle induced production of emerging medical radionuclides, Radiochim. Acta 2022; 110(6–9): 689–706

RNs commonly produced by (α, X) reaction routes

Table 1: Radionuclides commonly produced using the α-particle beam.

Radio- nuclide	T _{1/2}	Radiation emitted (%)	Nuclear reaction	Energy range (MeV)	Yield ^{a)} (MBq/µAh)	Purity (%)	References to production	Other investigated reactions ^{e)} [Reference]	
²⁸ Mg	21.1 h	β ⁻ (100)	²⁷ Al(a ,3p) ²⁸ Mg	$140 \mathop{\rightarrow} 30$	1.5	> 99	[56, 57]	²⁶ Mg(t,p) ²⁸ Mg (cf. [56, 57])	
³⁰ P	$2.5\mathrm{min}$	β ⁺ (100)	²⁷ Al(<i>a</i> ,n) ³⁰ P	$24 \rightarrow 10$	ca. 1000 ^{b)}	> 99.9	[60, 61]	³² S(n,t) ³⁰ P [61]	
³⁸ K	7.6 min	β ⁺ (100)	³⁵ Cl(α,n) ³⁸ K	$22 \rightarrow 7$	ca. 400 ^{b)}	> 99.8	[62-67]	³⁸ Ar(p,n) ³⁸ K [68] ⁴⁰ Ar(p,3n) ³⁸ K [69,70]	and other interesting RNs for NM
43K	22.2 h	β ⁻ (100)	${}^{40}Ar(\alpha,p){}^{43}K$	$21 \rightarrow 10$	7.0	97.5	[74-76]	⁴⁴ Ca(γ,p) ⁴³ K [77, 78] ⁴³ Ca(n,p) ⁴³ K [79]	applications produced by different (p,d, X)
⁷⁷ Br	57.0 h	EC (99.3) β ⁺ (0.7)	⁷⁵ As(α , 2n) ⁷⁷ Br	$28 \rightarrow 16$	16.6	> 99.9	[84-87]	⁷⁷ Se(p,n) ⁷⁷ Br [88, 89] ⁷⁸ Se(p,2n) ⁷⁷ Br [89, 90] ⁷⁹ Br(p,3n) ⁷⁷ Kr \rightarrow ⁷⁷ Br [91, 92] ⁷⁹ Br(d,4n) ⁷⁷ Kr \rightarrow ⁷⁷ Br [93]	routes may be explored by corresponding (α, X) beams
⁹⁵ Ru	1.65 h	EC (85.0) β ⁺ (15.0)	⁹² Mo(α,n) ⁹⁵ Ru	$28 \rightarrow 14$	240 ^{c)}	> 99	[97,98]	^{nat} Mo(³ He,xn) ⁹⁵ Ru [97, 98]	
97Ru	2.9 d	EC (100)	^{nat} Mo(a ,xn) ⁹⁷ Ru	$28 \rightarrow 16$	1.8 ^{d)}	> 99.8	[97-99]	^{nat} Mo(³ He,xn) ⁹⁷ Ru [97, 98]	
147 Gd	38.1 h	EC (99.7) β ⁺ (0.3)	¹⁴⁴ Sm(α,n) ¹⁴⁷ Gd	$27 \rightarrow 12$	4.8	> 99.8	[100, 101]	¹⁴⁷ Sm(³ He,3n) ¹⁴⁷ Gd [100, 101]	
²¹¹ At	7.3 h	EC (58) α (42)	²⁰⁹ BI(α ,2n) ²¹¹ At	$28 \rightarrow 10$	17.5	> 99	[81, 104–110]	²³² Th, ²³⁸ U(p,spall) ²¹¹ At [112] ²⁰⁹ Bi(^{6,7} Li,xn) ²¹¹ Rn → ²¹¹ At [113]	Table taken from:

^{a)} Calculated from excitation function.

^{b)} This is saturation yield.

⁽⁾ Value extrapolated to 100% enrichment of ⁹² Mo.

^{d)} At 15 h after EOB.

^{e)} For comments on these reactions, see text.

S. Qaim et al., Uses of alpha Particles, especially in Nuclear Reaction studies and *Medical Radionuclide Production*, Radiochim. Acta 2016; 104(9): 601–624

Conclusion and future perspectives

- A great deal of radionuclides for NM applications is currently produced, on a routine basis, by using proton beams, both for imaging (PET/SPECT) and therapy.
- Many interesting radionuclides may be produced by exploiting (α, X) nuclear reaction routes, which allow in many cases both radionuclidic and radiochemical purities levels unattainable with more conventional processes (protons).
- This production process is currently limited by the availability of intense enough accelerated alpha beams.
- However new technologies are now at the frontier: the high intensity (i.e. up to ~ 1 mAe, 6E15 s⁻¹), energy modulated (4-10 MeV/u) alpha-DTL under study at INFN-LNL.
- The challenge: high-intensity alpha sources, driven by the p(11B, α)8Be in short p-11B ->3α reaction and triggered by high-power laser systems, with enough repetition rate to avoid solid target pulsed thermal stresses, may become in the near term a new class of α drivers to be employed for such a goal?

Thanks for your attention

- Juan Esposito LARAMED collaboration group
- Viale Dell'Università, 2 -35020 Legnaro (PD)
- esposito@lnl.infn.it
 - www.lnl.infn.it