

Preliminary results on a modified Thomson Parabola Spectrometer design for laser-driven ion accelerators

<u>Alma Kurmanova^{1,2}</u>, Giada Petringa^{1,3}, Giuliana Milluzzo¹, and Pablo Cirrone^{1,2}

¹Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania, Italy ²Dipartimento di Fisica e Astronomia, Universit`a di Catania, Catania, Italy ³ELI-Beamlines, Institute of Physics, Prague, the Czech

Motivation

Investigation and detection of ionic products of $11B(p,\alpha)2\alpha$ initiated by the interaction of laser with matter

The proton boron-11 reaction – first an intermediate unstable carbon nucleus is formed, which rapidly splits into three alpha particles.

dedicated to differentiate proton and alpha particles traces with energy

ranges of 5-50 MeV and 2-10 MeV, respectively.

Standard TPS

4

Possible solutions for sufficient q/m resolution

Species separation can be increased by

- Electric field strength
- Longitudinal extension
- Drift range extension

Soloviev, A., et al. "Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures." *Scientific Reports* 7.1 (2017): 1-10.

Possible limitation

Electric field

- Dielectric breakdown of vacuum
- Fringe effect

Magnetic field

- High magnetic field causes gyration particles cannot reach the detector
- Fringe effect
- Long drift electric length makes magnetic field drift range longer

Experimental spectrum

Bonvalet, J., et al. "Energetic α-particle sources produced through proton-boron reactions by high-energy high-intensity laser beams." *Physical Review E* 103.5 (2021): 053202.

Analytical formulation

Equation of ion motion in the TPS is

$$\frac{d\vec{p}}{dt} = q\left(\vec{E} + \frac{\vec{p}}{m\gamma} \times \vec{B}\right)$$

where m, q, p, γ, E and B, are the ion mass, charge, momentum, Lorentz factor,

electric and magnetic field, respectively.

Analytical formulation (cont.)

Displacement of ions on the detector plane along x and y directions as

$$x = \frac{1}{\sqrt{\gamma^2 - 1}} \frac{qB}{mc} L_B \left(D_B + \frac{L_B}{2} \right)$$
$$y = \frac{1}{\gamma^2 - 1} \frac{qE}{mc^2} L_E \left(D_E + \frac{L_E}{2} \right)$$

Track of particles of a given q/m ratio on the detector place

$$y = \frac{m E L_E}{q B^2 L_B^2} \frac{(\frac{L_E}{2} + D_E)}{(\frac{L_B}{2} + D_B)^2} x^2$$

Analytical prediction - magnetic field strength

Analytical prediction - electric field strength

Analytical prediction - electric field length

Analytical prediction - electric field drift length

Analytical prediction

E, MV/m	L, mm	D, mm	Resolution, mm
0.5			0.076561
1.0	50	50	0.153122
1.5			0.229684
1.5	50		0.229684
	100	50	0.61249
	150		1.148418
1.5	150	50	1.148418
		100	1.607786
		150	2.067153

Schematic design

Simulation tool

TOPAS wraps and extends the Geant4 Simulation Toolkit to make advanced Monte Carlo

simulation.

TOPA	
the design of th	

<u>J Perl</u>, <u>J Shin</u>, <u>J Schumann</u>, <u>B Faddegon</u>, <u>H Paganetti</u>. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications <u>https://pubmed.ncbi.nlm.nih.gov/23127075/</u>

Simulated design

Simulation results

Conclusion

- 1. A preliminary design has been agreed upon increased electric field, electrode length, and drift length
- 2. Design benchmarked with simulation using realistic energy spectrum confirms a good resolution at high energy

Future tasks

- 1. To implement the detector's sensitivity
- 2. To implement a modified shape of the electrode for low energy range
- 3. To consider beam emittance and realistic source parameters
- 4. To consider fringe effect for electric and magnetic fields
- 5. To investigate filtering technique to differentiate ions with the same q/m ratio