Proton and alpha stopping power in laser-generated plasma: a systematic study proposed within the FUSION project

> Caterina Ciampi INFN and University of Florence

2nd International Workshop on Proton-Boron Fusion September, 5th-8th 2022

Physics case

Proton-Boron fusion in laser-generated plasma

$$p+^{11}B\rightarrow 3\alpha + 8.7 MeV$$

• *Aneutronic fusion reaction,* interesting alternative to DT reaction in the energy sector, **but** higher plasma ignition temperature

Physics case

Proton-Boron fusion in laser-generated plasma

$p+^{11}B \rightarrow 3\alpha + 8.7 MeV$

- *Aneutronic fusion reaction,* interesting alternative to DT reaction in the energy sector, **but** higher plasma ignition temperature
- p¹¹B fusion effectively induced exploiting high-power lasers interacting with boron-hydrogen targets (since 2005)
 - → significant progressive increase in the reaction yields (reaching α fluxes up to ~ 10¹⁰ particles/sr per shot)

Physics case

Proton-Boron fusion in laser-generated plasma

$p+^{11}B\rightarrow 3\alpha + 8.7 MeV$

- *Aneutronic fusion reaction,* interesting alternative to DT reaction in the energy sector, **but** higher plasma ignition temperature
- p¹¹B fusion effectively induced exploiting high-power lasers interacting with boron-hydrogen targets (since 2005)
 → significant progressive increase in the reaction yields (reaching *α* fluxes up to ~ 10¹⁰ particles/sr per shot)
- R&D needed to maximise the reaction rate (e.g. target development...)
- At present, an extensive systematic investigation of laser-based p¹¹B fusion is still missing

 \rightarrow necessary for a deeper understanding of the physics at the basis of the reaction in plasma

The **FUSION** project

FUsion StudIes of prOton boron Neutronless reaction in laser-generated plasma

Presented to the CSN5 of INFN, 10 INFN sections involved, in collaboration with ELI-Beamlines (CZ), HILASE (CZ), Physic Institute of Czech Academy of Science (CZ)

National responsibles: G.A.P. Cirrone (INFN-LNS), F. Consoli (ENEA)

"FUSION main aim is the study of the $p^{11}B$ reaction in laser generated plasmas in order to investigate its possible applications for energetic and multidisciplinary applications."

The **FUSION** project

FUsion StudIes of prOton boron Neutronless reaction in laser-generated plasma

Presented to the CSN5 of INFN, 10 INFN sections involved, in collaboration with ELI-Beamlines (CZ), HILASE (CZ), Physic Institute of Czech Academy of Science (CZ)

National responsibles: G.A.P. Cirrone (INFN-LNS), F. Consoli (ENEA)

"FUSION main aim is the study of the $p^{11}B$ reaction in laser generated plasmas in order to investigate its possible applications for energetic and multidisciplinary applications."

- optimisation of the setup to maximise the p¹¹B reaction rate in plasma, developing new-generation solid targets, exploiting different laser systems
- development of innovative diagnostic systems for plasma and radiation
- simulation and modelling of the phenomena at the basis of the reaction

The **FUSION** project

FUsion StudIes of prOton boron Neutronless reaction in laser-generated plasma

Presented to the CSN5 of INFN, 10 INFN sections involved, in collaboration with ELI-Beamlines (CZ), HILASE (CZ), Physic Institute of Czech Academy of Science (CZ)

National responsibles: G.A.P. Cirrone (INFN-LNS), F. Consoli (ENEA)

"FUSION main aim is the study of the $p^{11}B$ reaction in laser generated plasmas in order to investigate its possible applications for energetic and multidisciplinary applications."

- optimisation of the setup to maximise the p¹¹B reaction rate in plasma, developing new-generation solid targets, exploiting different laser systems
- development of innovative diagnostic systems for plasma and radiation
- simulation and modelling of the phenomena at the basis of the reaction
- characterisation of proton and alpha stopping power in plasma

Stopping power of ions in plasma

Why experimental data are needed

An accurate modelling of the stopping power of ions in plasma is needed for many applications:

- Fusion power research:
 - *α*-heating mechanism for Inertial Confinement Fusion
 - ion-driven fast ignition scheme
- Accelerator physics (e.g. plasma strippers)
- Plasma diagnostics exploiting ions
- Study of astrophysical phenomena (e.g. stellar energy transport)
- High-energy-density physics (HEDP) investigations

Stopping power of ions in plasma

Why experimental data are needed

An accurate modelling of the stopping power of ions in plasma is needed for many applications:

- Fusion power research:
 - *α*-heating mechanism for Inertial Confinement Fusion
 - ion-driven fast ignition scheme
- Accelerator physics (e.g. plasma strippers)
- Plasma diagnostics exploiting ions
- Study of astrophysical phenomena (e.g. stellar energy transport)
- High-energy-density physics (HEDP) investigations

High-energy regime: $v_p \gg v_{th}^e$

perturbative theories agree quite well with data

Stopping power of ions in plasma

Why experimental data are needed

An accurate modelling of the stopping power of ions in plasma is needed for many applications:

- Fusion power research:
 - *α*-heating mechanism for Inertial Confinement Fusion
 - ion-driven fast ignition scheme
- Accelerator physics (e.g. plasma strippers)
- Plasma diagnostics exploiting ions
- Study of astrophysical phenomena (e.g. stellar energy transport)
- High-energy-density physics (HEDP) investigations

High-energy regime: $v_p \gg v_{th}^e$

perturbative theories agree quite well with data

Low-energy regime: $v_p \approx v_{th'}^e$ around the Bragg peak

- strong projectile-plasma electron coupling: a detailed treatment of close collisions leads to a sensibly different energy loss
- sparse database, generally with uncertainties on plasma temperature

In a Standard Stopping Model approach:

In a Standard Stopping Model approach:

(Bethe formula, no Bloch and Barkas corrections applied)

• Cold matter: only the term for bound *e*⁻

In a Standard Stopping Model approach:

- Cold matter: only the term for bound *e*⁻
- For increasing plasma ionisation degree $\rightarrow \frac{dE}{dx}$ increases:

In a Standard Stopping Model approach: $4\pi a^4 T^2$

- Cold matter: only the term for bound *e*⁻
- For increasing plasma ionisation degree $\rightarrow \frac{dE}{dx}$ increases:
 - average ionisation energy \overline{I} replaced by the plasmon energy $\hbar \omega_{pe}$, with $\hbar \omega_{pe} < \overline{I} \rightarrow$ larger Coulomb logarithm for plasma

In a Standard Stopping Model approach:

free $e^$ plasma freq. $\omega_{pe} = \sqrt{4\pi n_{fe}e^2/m_e}$

- Cold matter: only the term for bound *e*⁻
- For increasing plasma ionisation degree $\rightarrow \frac{dE}{dx}$ increases:
 - average ionisation energy \overline{I} replaced by the plasmon energy $\hbar \omega_{pe}$, with $\hbar \omega_{pe} < \overline{I} \rightarrow$ larger Coulomb logarithm for plasma
 - beam ion effective charge state in target *Z*_{eff} higher in fully ionised plasma (reduced probability of free electron capture)

In a Standard Stopping Model approach:

bound e-

free
$$e^-$$

plasma freq. $\omega_{pe} = \sqrt{4\pi n_{fe}e^2/m_e}$

- Cold matter: only the term for bound *e*⁻
- For increasing plasma ionisation degree $\rightarrow \frac{dE}{dx}$ increases:
 - average ionisation energy \overline{I} replaced by the plasmon energy $\hbar \omega_{pe}$, with $\hbar \omega_{pe} < \overline{I} \rightarrow$ larger Coulomb logarithm for plasma
 - beam ion effective charge state in target Z_{eff} higher in fully ionised plasma (reduced probability of free electron capture)
 - \rightarrow Enhanced stopping power in plasma (experimentally observed)

In a Standard Stopping Model approach:

plasma freq. $\omega_{pe} = \sqrt{4\pi n_{fe}e^2/m_e}$

(Bethe formula, no Bloch and Barkas corrections applied)

• Cold matter: only the term for bound *e*⁻

• For increasing plasma ionisation degree $\rightarrow \frac{dE}{dx}$ increases:

- average ionisation energy \overline{I} replaced by the plasmon energy $\hbar \omega_{pe}$, with $\hbar \omega_{pe} < \overline{I} \rightarrow$ larger Coulomb logarithm for plasma
- beam ion effective charge state in target Z_{eff} higher in fully ionised plasma (reduced probability of free electron capture)
- \rightarrow Enhanced stopping power in plasma (experimentally observed)
- At higher temperatures $v_p/v_{th}^e < 1 \Rightarrow G(v_p/v_{th}^e)$ decreases

Stopping power of ions in plasma Effect of plasma temperature and density

For increasing temperature, $\frac{dE}{dx}$ decreases \rightarrow regions of reduced stopping power (recently observed)

L. González-Gallego *et al.*, Phys. Plasma 28, 043103 (2021) S.N. Chen *et al.*, Nat. Sci. Rep. 8, 14586 (2018)

Stopping power of ions in plasma Effect of plasma temperature and density

For increasing temperature, $\frac{dE}{dx}$ decreases \rightarrow regions of reduced stopping power (recently observed)

Also the free e^- density affects $\frac{dE}{dx}$, that decreases with increasing density. \rightarrow Enhanced/reduced stopping power intervals are shifted.

L. González-Gallego *et al.*, Phys. Plasma 28, 043103 (2021) S.N. Chen *et al.*, Nat. Sci. Rep. 8, 14586 (2018)

Stopping power of ions in plasma Stopping power models

Assuming different models can drastically change the stopping power, particularly in the Bragg peak region.

→ W. Cayzac *et al.*, Phys. Rev. E 92, 053109 (2015)

Stopping power of ions in plasma Stopping power models

Energy loss calculated assuming stopping models, Z_{eff} models and plasma condition simulations, e.g.: W. Cayzac *et al.*, Nat. Comm. 8, 15693 (2017) \leftarrow

- shaded bands → uncertainties in free e⁻ density and temperature
- experimental data disprove some stopping models

Assuming different models can drastically change the stopping power, particularly in the Bragg peak region.

→ W. Cayzac *et al.*, Phys. Rev. E 92, 053109 (2015)

- Few experimental measurements of ion stopping in plasma are available in the literature:
 - different plasma conditions (density, temperature and composition)
 - different projectiles (ion type and energy)

- Few experimental measurements of ion stopping in plasma are available in the literature:
 - different plasma conditions (density, temperature and composition)
 - different projectiles (ion type and energy)
- Experimental challenges:
 - plasma characterisation and modelling
 - ion pulse duration shorter than plasma evolution timescale

- Few experimental measurements of ion stopping in plasma are available in the literature:
 - different plasma conditions (density, temperature and composition)
 - different projectiles (ion type and energy)
- Experimental challenges:
 - plasma characterisation and modelling
 - ion pulse duration shorter than plasma evolution timescale
- A light-ion beam can simplify the description of the projectile charge-state distribution → cleaner data interpretation
 - simple collisional systems useful to pin down the role of projectile excited states on Z_{eff} (Y.T. Zhao *et al.*, Phys. Rev. Lett. 126, 115001 (2021))

- Few experimental measurements of ion stopping in plasma are available in the literature:
 - different plasma conditions (density, temperature and composition)
 - different projectiles (ion type and energy)
- Experimental challenges:
 - plasma characterisation and modelling
 - ion pulse duration shorter than plasma evolution timescale
- A light-ion beam can simplify the description of the projectile charge-state distribution → cleaner data interpretation
 - simple collisional systems useful to pin down the role of projectile excited states on Z_{eff} (Y.T. Zhao *et al.*, Phys. Rev. Lett. 126, 115001 (2021))
- Proton and *α*-particle energy loss in plasma is of great interest:
 - for protons, Z_{eff} is essentially $1 \rightarrow$ stopping power model selection
 - for p+B fusion development, stopping power for low-energy protons (main resonance at ~600 keV) is important
 - *α*-particle stopping power modelling is directly relevant for ICF (M. Temporal *et al.*, Eur. Phys. J. D 71, 132 (2017))

Caterina Ciampi

Proposed setup

In FUSION a set of measures will be dedicated to a systematic study of proton and α stopping power in a borated plasma.

FUSION: energy loss of ions in plasma Proposed setup

In FUSION a set of measures will be dedicated to a systematic study of proton and α stopping power in a borated plasma.

The proposed setup exploits 0.5-3 MeV proton and α bunched microbeams delivered by conventional accelerators, crossing a plasma plume generated under vacuum by a laser beam interacting with a solid target.

Beam chopper system

Low-energy proton and α beams provided by Singletron electrostatic accelerator (Physics Dept., Catania University).

Beam chopper system

Low-energy proton and α beams provided by Singletron electrostatic accelerator (Physics Dept., Catania University).

Caterina Ciampi

• Different laser system with respect to the other FUSION activities:

Energy	Pulse duration	High repetition rate
2 J per pulse	6 ns	10 Hz

Laser light focused to reach power densities $\sim 10^{12-13} \, \text{W/cm}^2$

• Thick targets ~mm (e.g. boron nitride BN)

• Different laser system with respect to the other FUSION activities:

Energy	Pulse duration	High repetition rate
2 J per pulse	6 ns	10 Hz

Laser light focused to reach power densities $\sim 10^{12-13} \, \text{W/cm}^2$

- Thick targets ~mm (e.g. boron nitride BN)
- Smart 3-axis micrometric target movimentation for both optimal focusing and repetition mode operation

Caterina Ciampi

Diagnostics and detectors

Plasma characterisation:

• Plasma parameters (i.e. temperature and density) extracted after the initial expansion via a dedicated diagnostic system (i.e. X-ray spectrometers and optical interferometers)

Diagnostics and detectors

Plasma characterisation:

• Plasma parameters (i.e. temperature and density) extracted after the initial expansion via a dedicated diagnostic system (i.e. X-ray spectrometers and optical interferometers)

Energy loss measurements:

• ToF measurements using SiC detectors (insensitive to visible light)

FUSION: energy loss of ions in plasma DAQ and synchronisation

- Data acquisition system for detectors and diagnostics based on fast digitizing boards.
- Global Timing and Synchronization system based on CAEN V1495 programmable logic driving all the devices during measurement
 - Trigger logic management
- Remote control of DAQ and trigger parameters, bias voltages etc.

Plasma

temperature and density

FUSION: energy loss of ions in plasma DAQ and synchronisation

- Data acquisition system for detectors and diagnostics based on fast digitizing boards.
- Global Timing and Synchronization system based on CAEN V1495 programmable logic driving all the devices during measurement
 - Trigger logic management
- Remote control of DAQ and trigger parameters, bias voltages etc.

 \rightarrow event by event correlation of plasma characteristics and ion energy loss information

FUSION: energy loss of ions in plasma DAQ and synchronisation

- Data acquisition system for detectors and diagnostics based on fast digitizing boards.
- Global Timing and Synchronization system based on CAEN V1495 programmable logic driving all the devices during measurement
 - Trigger logic management
- Remote control of DAQ and trigger parameters, bias voltages etc.

 \rightarrow event by event correlation of plasma characteristics and ion energy loss information

• Stopping power in plasma deduced by comparing the energy loss information to the simulations

• Preliminary overview of the designed setup dedicated to energy loss measurements in plasma within the FUSION project, a synergy of different experimental groups

- Preliminary overview of the designed setup dedicated to energy loss measurements in plasma within the FUSION project, a synergy of different experimental groups
- We plan to collect data for stopping power modelling in plasma
 → may have many fallouts in energy and multidisciplinary
 applications

- Preliminary overview of the designed setup dedicated to energy loss measurements in plasma within the FUSION project, a synergy of different experimental groups
- We plan to collect data for stopping power modelling in plasma
 → may have many fallouts in energy and multidisciplinary
 applications
- ... but we also foresee a future upgrade for p+¹¹B cross-section measurements (more detectors, beam current monitoring...)

- Preliminary overview of the designed setup dedicated to energy loss measurements in plasma within the FUSION project, a synergy of different experimental groups
- We plan to collect data for stopping power modelling in plasma
 → may have many fallouts in energy and multidisciplinary
 applications
- ... but we also foresee a future upgrade for p+¹¹B cross-section measurements (more detectors, beam current monitoring...)

Thank you!