Nano-structured micro-reactors

Theory: H. Ruhl, J. Bekx, C. Bild, O. Jaura, M. Lienert, J. Niemeyer, M. Nöth, G. Raj, M. Touati, N. Yadev Experiment: A. Broderson, P. Fischer, E. Gaul, B. Gonzales, J. Hartmann, G. Holzer, S. Kumar, D. Nebe, K. Rani, M. Schollmeier, A. Schuster, V. Scrutelnic, V. Shirvanyan, M. Speicher, S. Steinke, J. Warner

> Marvel Fusion GmbH, Munich, Germany p¹¹B Workshop Catania Sept 05, 2022

Concept The abstraction model Mixed fuel cross sections The drift field configurations Drift motion of fuel ions The conversion fraction Literature 00000 0 0000 0 0000 0

- 2 The abstraction model
- Mixed fuel cross sections
- The drift field configurations
- Drift motion of fuel ions
- The conversion fraction

Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature
00000					0000	

The nano-structured micro-reactor concept

Figure: The target consists of 400 cylindrical boron - proton - deuteron nano-rods, rod radius R = 100 nm, rod gap D = 600 nm. The laser pluse length is $\tau \approx 30$ fs, laser intensity is relativistic for electrons, the laser wavelength is $\lambda = 400$ nm, the laser spot size is $R_L \approx 4$ µm, and the polarization is circular.

Concept The abstraction model Mixed tuel cross sections The drift field configurations Drift motion of tuel ions The conversion fraction Literature ●0000 0 0 0 00 00 00 000 0

The nano-structured micro-reactor concept

- The reactor concept is microscopic.
- The reactor concept is nano-structured.
- The reactor concept is all fuel based.
- The reactor operates at near solid density.
- Nanoscopic fuel seeding is analyzed.
- Drift fields are analyzed.

• Goal A: Improvement of nuclear fusion over pitcher - catcher configuration.

Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature
00000						

Nanoscopic seeding

The basic framework is

$$\frac{\partial f_k}{\partial t} + \vec{v}_k \cdot \frac{\partial f_k}{\partial \vec{x}_k} + \frac{q_k}{m_k} \left(\vec{E} + \vec{v}_k \times \vec{B} \right) \cdot \frac{\partial f_k}{\partial \vec{v}_k} = \sum_l \int d^3 v_l \, v_{lel}^{kl} \int d\Omega_{\psi} \, \sigma_C^{kl}(s, \psi) \left(f_l \cdot f_k \cdot - f_l f_k \right) \\ - \sum_l \int d^3 v_l \, v_{lel}^{kl} \int d\Omega_{\psi} \, \sigma_R^{kl}(s, \psi) \, f_k \, f_l \, .$$

Nano-acceleration is fast. Hence we have

$$\left(\partial_{t} + v_{k}\partial_{r_{k}} + \frac{e_{k}}{m_{k}} E_{r}\left(r_{k}\right) \partial_{v_{k}}\right) \left(r_{k}v_{k}f_{k}\right) \left(r_{k}, v_{k}, t\right) = 0, \quad r_{k} \leq R,$$

$$(1)$$

where R is the nano-rod radius and

$$E_{\Gamma}(r_{k}) = \begin{cases} C_{I}r_{k}, & 0 \le r_{k} < R \\ 0, & r_{k} \ge R \end{cases}, \quad C_{I} = \frac{en_{I}}{2\epsilon_{0}}.$$

$$(2)$$

The solutions are

$$t_{k}^{S} = \sqrt{\frac{m_{k}}{e_{k}C_{l}}} \cosh^{-1}\left(\frac{R}{r_{k}^{S}(0)}\right), \quad t_{k}^{S}(t_{k}^{S}) = R, \quad g_{k}^{S}(t_{k}^{S}) = \sqrt{\frac{e_{k}C_{l}}{m_{k}}} \sqrt{R^{2} - \left(r_{k}^{S}(0)\right)^{2}}.$$
 (3)

			Nano-structured micro-reacto	ors		5
00000						
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

Nanoscopic seeding

Figure: Short intense laser pulse interacting with nano-rods.

Concept The abstraction model Mixed fuel cross sections The drift field configurations. Drift motion of fuel lons. The conversion fraction Literature OOO 0 0 000 0 000 0 0000 0

Nanoscopic seeding

Figure: Proton momentum distributions integrated over the configuration space after the laser pulse has exited the nano-structures. The proton momenta are normalized to $m_0 c$.

Concept The abstraction model Mixed fuel cross sections The drift field configurations. Unit motion of fuel lons The conversion fraction Literature 0000 0 000 0 000 0 0000 0

The abstraction model

With the help of the seeding configuration (3) and as outlined in [1] the abstraction model is

$$\frac{dN_k(t)}{dt} \approx -N_k^2(t) \frac{N}{V} \sum_s \alpha_k^{\rm S} g_k^{\rm S}(t) \sigma_H^{kl} \left(g_k^{\rm S}(t)\right) , \qquad (4)$$

where

$$\frac{d\tilde{g}_{k}^{S}(t)}{dt} \approx \frac{e_{k}}{m_{k}} \left[\vec{E} \left(\vec{r}_{k}^{S}(t), t \right) + \vec{g}_{k}^{S}(t) \times \vec{B} \left(\vec{r}_{k}^{S}(t), t \right) \right] - \nu_{ke}^{S} \left(g_{k}^{S}(t) \right) \vec{g}_{k}^{S}(t)$$
(5)

and

$$\frac{d\vec{r}_k^S(t)}{dt} = \vec{g}_k^S(t), \quad (6)$$

where N_k is the number of fuel ions of sort k, the \bar{g}_k^s are the fuel velocities of sort k, the \bar{r}_k^s are the fuel positions of sort k, the quantities \vec{E} and \vec{B} denote the electromagnetic field context, and the ν_{ke}^s energy draining resistivities given by

$$\nu_{ke}^{S}\left(\vec{g}_{k}^{S}(t)\right) \approx \frac{e_{k}^{2}e_{e}^{2}n_{l}}{4\pi\epsilon_{0}^{2}m_{ke}^{2}\left|\vec{g}_{k}^{S}(t)-\vec{v}_{e}(t)\right|^{3}} \ln\Lambda_{ke}, \qquad (7)$$

where \vec{v}_e is the electron velocity at the position \vec{r}_e and n_l the fuel density of sort *l*.

			Nano-structured micro-reacte	are		
00000	•		000	00	0000	
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

Mixed fuel cross sections

As the (4) implies the conversion efficiency η^{kl} is limited by

6

$$\eta^{kl} \le n_l \,\mathcal{R}_k \,\sigma_0^{kl} \,, \quad \mathcal{R}_k \approx \int_0^{t_C} dt \,g_k(t) \,, \tag{8}$$

while the velocity is determined by the initial seeding fields as well as secondary fields. The nuclear fusion cross sections are parametrized as

$$Y_{R}^{kl}\left(\vec{g}_{k}^{S}(t)\right) \geq \begin{cases} \sigma_{0}^{kl}, & \sqrt{\frac{2\epsilon_{k}^{kl}}{m_{k}}} \leq \left|\vec{g}_{k}^{S}(t)\right| \leq \sqrt{\frac{2\epsilon_{k}^{kl}}{m_{k}}} & , \end{cases}$$
(9)

where σ_0^{kl} , ϵ_1^{kl} , and ϵ_2^{kl} with $\epsilon_1^{kl} \leq \epsilon_2^{kl}$ are the parameters required to fix a lower limit approximation of the multi cross sections considered. An example is given in Fig. 4.

Figure: Comparison between the cross sections of pB and DT as quoted in reference [2].

			Nano-structured micro-reacto	ors		ç
		•				
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

The drift field configuration

Simulations indicate that secondary fields are generated in the nano-structures as well. We make a parametric ansatz for the secular electromagnetic field context

$$\vec{B}(\vec{r}, t) \approx \begin{cases} \frac{|\vec{e}r|}{2\epsilon_0 c^2} \vec{e}_{\phi}, & r \leq R_L \\ 0, & r > R_l \end{cases}$$
, (10)

where $j_e = q_e n_e v_e$ is the strength of the electronic current density. The electric field associated with j_e and B is

$$\vec{E}(\vec{r},t) \approx \begin{cases} \frac{j_{\theta}^2 r}{2\epsilon_0 c^2 q_{\theta} n_{\theta}} \vec{e}_r & r \leq R_L \\ 0 & r > R_L \end{cases}, \quad (11)$$

where R₁ is the approximate diameter of the electronic forward current.

19

			Nano structured micro reacto	10		10
0000	0 0		000	00	0000	
Conce	pt The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

The drift field configuration

Figure: Simulated magnetic drift field.

			Nano-structured micro-reacto	re		11/
00000			000	00	0000	
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

The drift field configuration

Figure: Simulated electric drift field.

			Nano-structured micro-reacto			12/1
			000			
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

Drift motion of fuel ions

The abstraction model implies

$$\frac{d\vec{x}_k^S}{dt} = \vec{g}_k^S, \qquad (12)$$

$$\frac{dg_{kx}^{s}}{dt} = -\frac{q_{k} \left(Ex_{k}^{s} - g_{kz}^{s} Bx_{k}^{s}\right)}{m_{k} \sqrt{\left(x_{k}^{s}\right)^{2} + \left(y_{k}^{s}\right)^{2}}} - \nu_{ke}^{s} g_{kx}^{s}, \qquad (13)$$

$$\frac{dg_{ky}^{s}}{dt} = -\frac{q_{k} \left(E y_{k}^{s} - g_{kz}^{s} B y_{k}^{s}\right)}{m_{k} \sqrt{\left(x_{k}^{s}\right)^{2} + \left(y_{k}^{s}\right)^{2}}} - \nu_{ke}^{s} g_{ky}^{s}, \qquad (14)$$

$$\frac{dg_{kZ}^{S}}{dt} = -\frac{q_{k} B \left(x_{k}^{S} g_{kX}^{S} + y_{k}^{S} g_{ky}^{S}\right)}{m_{k} \sqrt{\left(x_{k}^{S}\right)^{2} + \left(y_{k}^{S}\right)^{2}}} - \nu_{k\theta}^{S} g_{kZ}^{S} .$$
(15)

The configuration is energy-momentum conserving.

$$g_{Z} = g_{Z0} + \frac{q_{k}B}{m_{k}} \left(\sqrt{x_{0}^{2} + y_{0}^{2}} - \sqrt{x^{2} + y^{2}} \right) , \qquad (16)$$

$$g_{X}^{2} + g_{Y}^{2} = g_{X0}^{2} + g_{Y0}^{2} + \frac{2q_{k}}{m_{k}} \left[E - g_{Z0} B \right] \left(\sqrt{x_{0}^{2} + y_{0}^{2}} - \sqrt{x^{2} + y^{2}} \right) - \frac{q_{k}^{2}B^{2}}{m_{k}^{2}} \left(\sqrt{x_{0}^{2} + y_{0}^{2}} - \sqrt{x^{2} + y^{2}} \right)^{2} ,$$

$$g_{Z} = \frac{EB}{B^{2}} - \sqrt{\left(\frac{EB}{B^{2}} - g_{Z0} \right)^{2} + g_{X0}^{2} + g_{Y0}^{2} - g_{X}^{2} - g_{Y}^{2}} .$$

00000 0		000	•0	000	00 0	
Concept The ab	straction model Mixe	d fuel cross sections The c	drift field configurations Drift m	notion of fuel ions The	conversion fraction Li	terature

Nano-structured micro-reactors

13/19

Drift motion of fuel ions

Figure: Gyro motion of fuel ions for $x_0 = 100 \ \mu$ m, $g_{y0} = 0.1 \ c$, $E = 10^{12} \ V/m$, $B = 10^4 \ vs/m^2$, and $\nu_{ke} = 10^{10} / s$.

			Nano-structured micro-reacto	rs		14/
				00		
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

The cycle-averaged drift field enhanced conversion fraction becomes

$$\eta^{kl} \approx \frac{n_l \sigma_0^{kl} \sum_s \alpha_k^s \int_0^{l_c} dt \left| g_k^{s}(t) \right|_c}{1 + n_l \sigma_0^{kl} \sum_s \alpha_k^s \int_0^{l_c} dt \left| g_k^{s}(t) \right|_c}.$$
(17)

We have

$$n_{l}\sigma_{0}^{kl}\sum_{s}\alpha_{k}^{s}\int_{0}^{t_{C}}dt \left|\bar{g}_{k}^{s}(t)\right|_{C}$$
(18)
$$=n_{l}\sigma_{0}^{kl}\sum_{s}\alpha_{k}^{s}\int_{0}^{t_{C}}dt \sqrt{a_{k}\left(1+e^{-2\nu_{k}e^{t}}\right)+b_{k}^{s}e^{-2\nu_{k}e^{t}}}$$
$$=\sigma_{0}^{kl}\sum_{s}\alpha_{k}^{s}\frac{n_{l}\sqrt{a_{k}}}{\nu_{ke}}\left[\operatorname{arsinh}\left(\sqrt{\frac{a_{k}e^{2\nu_{k}e^{t}C}}{a_{k}+b_{k}^{s}}}\right)-\operatorname{arsinh}\left(\sqrt{\frac{a_{k}}{a_{k}+b_{k}^{s}}}\right)\right]$$
$$+\sigma_{0}^{kl}\sum_{s}\alpha_{k}^{s}\frac{n_{l}\left(\sqrt{2a_{k}+b_{k}^{s}}-\sqrt{\left(a_{k}+b_{k}^{s}\right)e^{-2\nu_{k}e^{t}C}+a_{k}\right)}\right)}{\nu_{ke}}$$

			Nano-structured micro-reacto	rs		15
					•000	
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature

under the constraint

$$\sqrt{\frac{2\epsilon_1^{kl}}{m_k}} \le \sqrt{a_k \left(1 + e^{-2\nu_k e^l}\right) + b_k^s e^{-2\nu_k e^l}} \le \sqrt{\frac{2\epsilon_2^{kl}}{m_k}}, \tag{19}$$

where

$$a_{k} = \frac{a_{k}^{2}E^{2}}{m_{k}^{2}\nu_{ke}^{2} + q_{k}^{2}B^{2}},$$
 (20)

$$b_k^s = \left(\vec{g}_{k0}^s \right)^2 ,$$
 (21)

$$\vec{g}_{k0}^{\ S} = \sqrt{\frac{e_k C_l}{m_k}} \sqrt{R^2 - \left(r_{k0}^{\ S}\right)^2} \vec{e}_r , \qquad (22)$$

$$\nu_{k\theta} \approx \frac{\alpha \ e_k^2 e_\theta^2 \ n_l \ln \Lambda_{k\theta}}{4\pi \epsilon_0^2 \ m_{k\theta}^2 \ c^3} , \qquad (23)$$

$$0 < \alpha < 1$$
 (24)

holds for the resistivities and initial velocities. The parameter R is the nano-rod radius, α is the fraction of free electrons, and C_I is the strength of the embedded nano-accelerator composed of the fuel constituent I.

			Nano-structured micro-reactors			16	
00000			000	00	0000		
Concept	The abstraction model	Mixed fuel cross sections	The drift field configurations	Drift motion of fuel ions	The conversion fraction	Literature	

Figure: Illustration of the nonlinear fuel velocity in the drift field configuration denoted by $|g_k^R$, of the cycle-averaged fuel velocity in the drift field configuration denoted by $|g_{av}|_k^R = \sqrt{a_k} (1 + e^{-2\nu_k et}) + b_k^S e^{-2\nu_k et}^i$, in the absence of the drift field configuration denoted by $|g_{e1}|_k^R = \sqrt{b_k^S} e^{-\nu_k et}^i$, of $|g_{e2}|_k^S = \sqrt{a_k}$, and of $|g_{e3}|_k^S = \sqrt{2a_k + b_k^S}$. The parameters are $\nu_{ke} = 10^{10}$ /s, $g_{x0} = 0.01 c$, $g_{y0} = -0.01 c$, $g_{z0} = 0.0$, $E = 10^{11}$ V/m, and $B = 10^4$ T. Seeding velocities correspond to the green line.

Figure: Conversion fraction $\eta^{DT, PB}$ (with fields plus damping) for various seeding velocities and the limiting cases $\eta_1^{DT, PB}$ (without fields) and $\eta_2^{DT, PB}$ (with fields without damping). The parameters are $E \approx 2.0 \cdot 10^{11}$ V/m, $B \approx 10^4$ Vs/m², $\nu_{ke} \approx 10^{10}$ /s. The densities are $n_D = n_T = n_B = n_0 = 1.25 \cdot 10^{28}$ m⁻³.

Literature

H. Ruhl, G. Korn, A laser-driven mixed fuel nuclear fusion reactor concept (Feb. 2022). doi:10.48550/arXiv.2202.03170.

W. Nevins, R. Swain, The thermonuclear fusion rate coefficient for p-11b reactions, Nuclear fusion 40 (4) (2000) 865.

Concept The abstraction model Mixed fuel cross sections The drift field configurations Drift motion of fuel lons The conversion fraction Literature