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The nano-structured micro-reactor concept

Figure: The target consists of 400 cylindrical boron - proton - deuteron nano-rods, rod radius R = 100 nm, rod gap
D = 600 nm. The laser pluse length is = ~ 30 fs, laser intensity is relativistic for electrons,the laser wavelength is
A = 400 nm,the laser spot size is R, ~ 4 um, and the polarization is circular.




The nano-structured micro-reactor concept
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The reactor concept is microscopic.

The reactor concept is nano-structured.
The reactor concept is all fuel based.

The reactor operates at near solid density.
Nanoscopic fuel seeding is analyzed.
Drift fields are analyzed.

Goal A: Improvement of nuclear fusion over pitcher - catcher configuration.
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Nanoscopic seeding

The basic framework is
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Nano-acceleration is fast. Hence we have
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where R is the nano-rod radius and
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Nanoscopic seeding

Figure: Short intense laser pulse interacting with nano-rods.




Nanoscopic seeding
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Figure: Proton momentum distributions integrated over the configuration space after the laser pulse has exited the

nano-structures. The proton momenta are normalized to mpc.
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The abstraction model

With the help of the seeding configuration (3) and as outlined in [1] the abstraction model is
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where N is the number of fuel ions of sort k, the §ks are the fuel velocities of sort k, the st are the fuel positions of sort k, the quantities £
and B denote the electromagnetic field context, and the x/,fe energy draining resistivities given by
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where Vg is the electron velocity at the position g and n; the fuel density of sort /.
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Mixed fuel cross sections

As the (4) implies the conversion efficiency nkl is limited by

ki Kl f
<Rl Ry /Ocdlgk(t). ®
while the velocity is determined by the initial seeding fields as well as secondary fields. The nuclear fusion cross sections are parametrized
as
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where agl. eq‘l. and 6’2‘/ with sf’ < 5’2‘/ are the parameters required to fix a lower limit approximation of the multi cross sections

considered. An example is given in Fig.
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Figure: Comparison between the cross sections of pB and DT as quoted in reference [2].
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The drift field configuration

Simulations indicate that secondary fields are generated in the nano-structures as well. We make a parametric ansatz for the secular
electromagnetic field context

jer =
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B(ft) =~ 2¢g2 =" (10)

0, r> AR

where je = geneVe is the strength of the electronic current density. The electric field associated with je and B is
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where R is the approximate diameter of the electronic forward current.




The drift field configuration
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The drift field configuration
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Figure: Simulated electric drift field.




Drift motion of fuel ions

The abstraction model implies
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The configuration is energy-momentum conserving.
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Drift motion of fuel ions
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The conversion fraction

The cycle-averaged drift field enhanced conversion fraction becomes
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The conversion fraction

under the constraint
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holds for the resistivities and initial velocities. The parameter R is the nano-rod radius, « is the fraction of free electrons, and C, is the
strength of the embedded nano-accelerator composed of the fuel constituent /.




The conversion fraction
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Figure: lllustration of the nonlinear fuel velocity in the drift field configuration denoted by \g\i, of the cycle-averaged fuel velocity in the

drift field configuration denoted by \gav\i = \/ak (1 + e_zyket) + bﬁ e_z”ket, in the absence of the drift field configuration

denoted by [ggq |5 = /bf e~ ke fof |9e2f = /@ and of |geg|§ = \/2 @k + b. The parameters are vy = 10105,
9xo = 0.01¢,9y9 = —0.01¢,g,0 =0.0,E = 101 v/m, and B = 10% T. Seeding velocities correspond to the green line.
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The conversion fraction
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Figure: Conversion fraction n (with fields plus damping) for various seeding velocities and the limiting cases 7;1DT’pB (without

ields) and 75 ' *P° (with fields without damping). The parameters are E ~ 2.0 - 1011 vim, B &~ 10% Vs/m?, v, , ~ 1010 /s. The
fields) and 2" *P5 (with fields without damping). Th E " ym, B 4 vsim?, vy 10 /5. Th

densities are np = np = ng = np = 1.25 - 1028 m—3,
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