Artificial Intelligence in Medicine

ML on imaging data of 10B uptake tracks

Ian Postuma

Istituto Nazionale di Fisica Nucleare, Pavia, Italy

Passive nuclear track detectors (CR39) for ¹⁰B uptake measurements

i.e. counting black dots on a microscopic image

Sample + CR39

Nuclear Research Reactor @ LENA (UniPV)

Sample chemical etching

The Database

240 images with a range of tracks per picture going from 0 to 800

approximately 30.000 tracks (SW aided and hand made)

1 object category detection

non convolutional neural network methods

3D peak search

Blob detection

Laplacian of Gaussian

Pre-trained convolutional neural network approach

Keras RCNN

"Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks." arxiv

YOLOV library

"You Only Look Once: Unified, Real-Time Object Detection" arxiv

Next goals

We are evaluating the accuracy of the tested techniques

ongoing thesis

We are going to evaluate the performance of this technique on data coming from other laboratories (Argentina)

We will evaluate **Mask-RCNN** to separate cells from tracks

Time for questions!

ian.postuma@pv.infn.it