Synthetic generation and data augmentation


Enrico Giampieri

University of Bologna - enrico.giampieri@unibo.it

nextAIM - 2022-02-17

Big Data Science

Big Data Science

Have we gone back to the Baconian Method?

collect a lot of data ... ALL the data!

Big Data Science

Have we gone back to the Baconian Method?

- collect a lot of data ... ALL the data!
- remove unrelated observations

Big Data Science

Have we gone back to the Baconian Method?

- collect a lot of data ... ALL the data!
- remove unrelated observations
- 3 stare at them reeaally hard

Big Data Science

Have we gone back to the Baconian Method?

- collect a lot of data ... ALL the data!
- remove unrelated observations
- 3 stare at them reeaally hard
- 4

Big Data Science

Have we gone back to the Baconian Method?

- collect a lot of data ... ALL the data!
- remove unrelated observations
- 3 stare at them reeaally hard
- 4
- 5 science?

Big Data Science

Big Data \Rightarrow better results?

more data make you more certain, not more right

Big Data \Rightarrow better results?

more data make you more certain, not more right if the data is biased

Big Data \Rightarrow better results?

more data make you more certain, not more right

if the data is biased

you get more certain of the wrong thing!

Big Data Science

50 Shapes of data?

- wide data (many variables)
- long data (many subjects)
- deep data (time series)
- connected data (networks and relational databases)
- complex data:
 - unstructured data
 - context/domain dependent
 - interval data
 - missing data

Big Data Science

Data entropy

Big Data Science 0000000

let's not measure data by size, but information richness

Bayesian inception

Big Data Science 000000

no model has no assumption, let's not try to pretend otherwise

Bayesian inception

Big Data Science 000000

> no model has no assumption, let's not try to pretend otherwise make your assumptions explicit

Bayesian inception

Big Data Science 0000000

no model has no assumption, let's not try to pretend otherwise

make your assumptions explicit

make your knowledge explicit

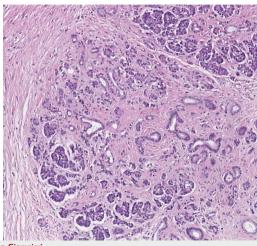
data augmentation

data augmentation

Big Data Science

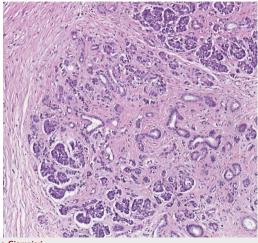
do our models respects our data?

A Noether Theorem for models?

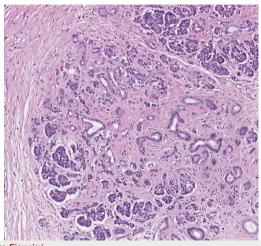

all the problems have intrinsic invariants to them

A Noether Theorem for models?

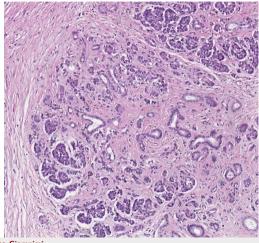
all the problems have intrinsic invariants to them they are often implicit, or unspoken


A Noether Theorem for models?

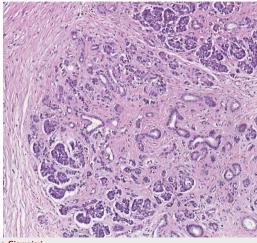
all the problems have intrinsic invariants to them they are often implicit, or unspoken ... or mispoken


■ invariance for rotation

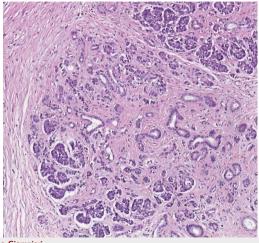
Enrico Giampieri


- invariance for rotation
- invariance for saturation/colorization

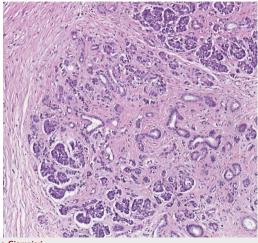
Enrico Giampieri



- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity

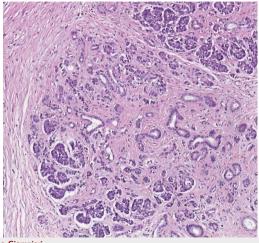

Enrico Giampieri

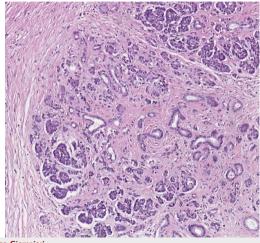
- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity
- invariance for contrast


- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity
- invariance for contrast
- invariance for reflection

- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity
- invariance for contrast
- invariance for reflection
- invariance (almost) for scaling

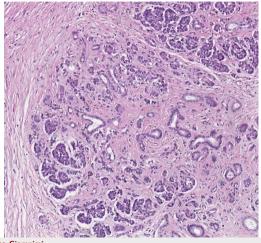
 Big Data Science
 data augmentation
 data syntesis
 In conclusion


 0000000
 000000
 0000000
 0000000

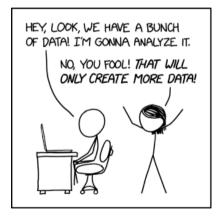

- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity
- invariance for contrast
- invariance for reflection
- invariance (almost) for scaling
- invariance (almost) for deformation

 Big Data Science
 data augmentation
 data syntesis
 In conclusion

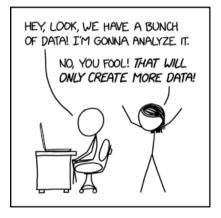
 0000000
 000000
 0000000
 0000000


- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity
- invariance for contrast
- invariance for reflection
- invariance (almost) for scaling
- invariance (almost) for deformation
- invariance (almost) for blurring

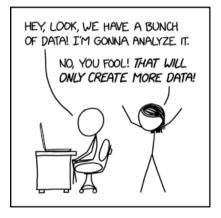
- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity
- invariance for contrast
- invariance for reflection
- invariance (almost) for scaling
- invariance (almost) for deformation
- invariance (almost) for blurring
- invariance (almost) photon shot noise


 Big Data Science
 data augmentation
 data syntesis
 In conclusion

 ○○○○○○
 ○○○○○○
 ○○○○○○
 ○○○○○○


- invariance for rotation
- invariance for saturation/colorization
- invariance for luminosity
- invariance for contrast
- invariance for reflection
- invariance (almost) for scaling
- invariance (almost) for deformation
- invariance (almost) for blurring
- invariance (almost) photon shot noise
- invariance (almost) blue noise (salt and pepper)

if only it was so easy!


how does one manage borders?

if only it was so easy!

- how does one manage borders?
- how many augmentation is too many?

if only it was so easy!

- how does one manage borders?
- how many augmentation is too many?
- how to describe: "basically the same but not the same"?

model augmentation

with current neural networks there are very few methods to incorporate this knowledge directly

model augmentation

with current neural networks there are very few methods to incorporate this knowledge directly

we have to rely on data augmentation, i.e. repeating data with variations... the intention is good!

model augmentation

with current neural networks there are very few methods to incorporate this knowledge directly

we have to rely on data augmentation, i.e. repeating data with variations... the intention is good!

but the road to hell is paved with good intentions!

model augmentation

with current neural networks there are very few methods to incorporate this knowledge directly

we have to rely on data augmentation, i.e. repeating data with variations... the intention is good!

but the road to hell is paved with good intentions!

we need better methods to incorporate invariants in our models from the ground up!

Big Data Science

if we have few controls, but we know how they should look like. . .

Big Data Science

if we have few controls, but we know how they should look like. . .

could we frankestein them?

a problematic organ

pancreas is a hard organ to work with

a problematic organ

pancreas is a hard organ to work with

it is:

- autolytic
- small
- uncomfortable to reach

a problematic organ

pancreas is a hard organ to work with

it is:

Big Data Science

- autolytic
- small
- uncomfortable to reach

can we create our own?

 Big Data Science
 data augmentation
 data syntesis
 In conclusion

 000000
 000000
 000000
 000

This person does not exists

GANs can generate interesting samples

 Big Data Science
 data augmentation
 data syntesis
 In conclusion

 0000000
 000000
 000000
 000000
 000000

This person does not exists

- GANs can generate interesting samples
- we fall back to the problems of model properties

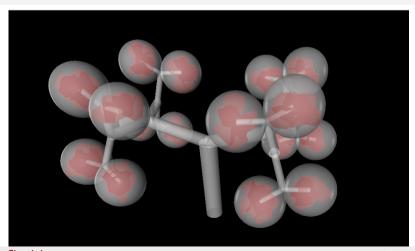
 Big Data Science
 data augmentation
 data syntesis
 In conclusion

 000000
 000000
 000000
 000
 000

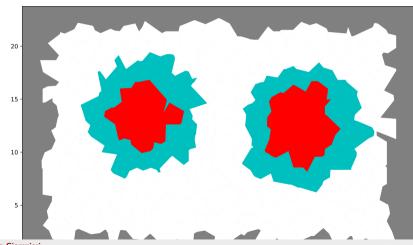
This person does not exists

- GANs can generate interesting samples
- we fall back to the problems of model properties
- still we don't have explicit knowledge of the structure

 Big Data Science
 data augmentation
 data syntesis
 In conclusion


 000000
 000000
 000000
 000
 000

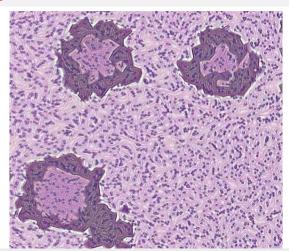
This person does not exists


- GANs can generate interesting samples
- we fall back to the problems of model properties
- still we don't have explicit knowledge of the structure
- and can still create monsters

duct network with L-systems

Enrico Giampieri

virtual tomography



Enrico Giampieri

 Big Data Science
 data augmentation
 data syntesis
 In conclusion

 ○○○○○○
 ○○○○○○
 ○○○○○○
 ○○○

style transfer

Enrico Giampieri

In conclusion

In conclusion

- let's celebrate "not so big data"
 - necessity is the mother of invention
- let's create models that better encode:
 - our assumptions
 - our knowledge
 - the system's invariants
- create the data you want but don't have

Thank you for you attention