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Back to the Future: Big Data Edition

Have we gone back to the Baconian Method?

1 collect a lot of data . . . ALL the data!

2 remove unrelated observations
3 stare at them reeaally hard
4 . . .
5 science?
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Big Data ⇒ better results?

more data make you more certain, not more right

if the data is biased . . .

you get more certain of the wrong thing!
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50 Shapes of data?

wide data (many variables)
long data (many subjects)
deep data (time series)
connected data (networks and relational databases)
complex data:

unstructured data
context/domain dependent
interval data
missing data
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Data entropy

let’s not measure data by size, but information richness
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Bayesian inception

no model has no assumption, let’s not try to pretend otherwise

make your assumptions explicit

make your knowledge explicit
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do our models respects our data?
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A Noether Theorem for models?

all the problems have intrinsic invariants to them

they are often implicit, or unspoken

. . . or mispoken
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the pathomic case
invariance for rotation

invariance for saturation/colorization
invariance for luminosity
invariance for contrast
invariance for reflection
invariance (almost) for scaling
invariance (almost) for deformation
invariance (almost) for blurring
invariance (almost) photon shot noise
invariance (almost) blue noise (salt
and pepper)
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if only it was so easy!

how does one manage borders?

how many augmentation is too
many?
how to describe: “basically the same
but not the same”?
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model augmentation

with current neural networks there are very few methods to incorporate this knowledge
directly

we have to rely on data augmentation, i.e. repeating data with variations. . . the
intention is good!

but the road to hell is paved with good intentions!

we need better methods to incorporate invariants in our models from the ground up!
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data syntesis
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data syntesis

if we have few controls, but we know how they should look like. . .

could we frankestein them?
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a problematic organ

pancreas is a hard organ to work with

it is:

autolytic
small
uncomfortable to reach

can we create our own?
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This person does not exists

GANs can generate interesting
samples

we fall back to the problems of model
properties
still we don’t have explicit knowledge
of the structure
and can still create monsters
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duct network with L-systems

Enrico Giampieri University of Bologna - enrico.giampieri@unibo.it
Synthetic generation and data augmentation



Big Data Science data augmentation data syntesis In conclusion

virtual tomography
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style transfer
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In conclusion

let’s celebrate “not so big data”
necessity is the mother of invention

let’s create models that better encode:
our assumptions
our knowledge
the system’s invariants

create the data you want but don’t have
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Thank you for you attention
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