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Performance of the algorithms vs. sample size
● Traditional machine learning models can perform even better than deep learning ones 

for small sample sizes

● Deep learning models definitely outperform traditional ones in case of large and 

meaningful data samples
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A. Retico - Analysis of small datasets in radiomics and machine learning 

From Wikimedia Commons

• The performances of both traditional and deep 
learning models increase with data sample size

• however, the capacity of traditional machine 
learning models reaches a limit at a certain point



Typical ML-based approaches used in medical imaging 
data analysis 
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a) Radiomics + 
Machine Learning

b) Deep Learning
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Difficulties in gathering large annotated samples in the 
medical field

● Data annotation by human experts is an extremely time-consuming task, which 
may require the collection of additional information stored in other data 
sources, expertise in segmenting meaningful regions in images, or specific 
knowledge to assign class labels.

● Gathering data and annotations from many sources increases the 
heterogeneity of the sample, which therefore requires to be harmonized.
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• Trade-off between the quality and the size of the datasets 
• In radiomics the dataset sizes range from a few dozens to a few hundreds of instances.



Challenges when dealing with data samples of limited size
● In machine learning process, there is a trade-off between underfitting and overfitting

● Instability → 
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• We have to chose a model with a 
complexity degree suitable to fit our data

 
• In case of limited sample sized we often 

risk to use too complex model (overfit)

(high bias) (high variance)

Lack of generalization 
capability

Lack of appropriate data 
representation

● Hyper-parameter optimization

● Performance evaluation



Data partition schemes 

Hold out

Data can be split in a Training (Training + 
Validation) and Test sets, both (hopefully) 
representative of the whole population. 
Typical split portions are:
●  80% in train; 20% in test 

●  70% in train; 30% in test 
The average of five-ten repetitions with 
random splits provide test performance with 
standard error
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K-fold cross validation (CV): 
○ Data is partitioned into K subsamples: one is retained as test data 

while remaining (K − 1) subsamples are used as training data (training). 
○ CV process is repeated K times (the folds), with each of the K 

subsamples used exactly once as test data. 
○ The K results from the folds then can be averaged (or otherwise 

combined) to produce a single estimation.

Leave-one-out CV:
○ K-fold CV with K=Numbers of samples, thus each fold has only one 

example. It is used in case the dataset is extremely limited in size.

DATA

Training                    Validation Test
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Nested CV 
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A CV scheme is used for hyper-parameter optimization and another one for 
performance assessment:
• The hyper-parameter optimization of the algorithms is performed through an 

exhaustive search in the inner CV loop. 
• The performances are evaluated in the outer CV loop. 



Practical example: Radiomics and Machine Learning 
models for lung cancer stage and histology 
prediction using small data samples
● Goal: To determine the stage and histology is 

crucial for tumor treatment. 

● Imaging-based classification via radiomic 

features would avoid biopsy, reducing also the 

risk of biopsy sampling error, as the whole 

lesion volume is considered. 

● A typical radiomic workflow has been 
implemented:
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[Ubaldi, L., Valenti, V., Borgese, R. F., Collura, G., Fantacci, M. E., Ferrera, G., … Marrale, M. (2021). Strategies to develop Radiomics and Machine learning models for lung 
cancer stage and histology prediction using small data samples, Physica Medica, in press]

Prediction
tumor stage

histology



Available datasets: L-RT (proprietary) and Lung1 (public) 

Lung1 public data sample available on TCIA, 
https://www.cancerimagingarchive.net/ 
130 CT scans of patients with NSCLC
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Histology L-RT Lung1 
Adenocarcinoma  20 16 
Large Cell Carcinoma 4 60 
Squamous Cell Carcinoma 10 54 
Not Available 13 -
Total number of subjects 47 130

Overall Stage L-RT Lung1 
I 42 27
II 5 13
IIIa - 37
IIIb - 53
Total number of stage I-II/IIIa-IIIb 47/0 40/90

L-RT proprietary data sample collected at the A.R.N.A.S. 
Civico University Hospital of Palermo (IT): 
47 CT scans of patients with non-small cell lung cancer 
(NSCLC) 

Histology and overall stage distributions

https://www.cancerimagingarchive.net/


Radiomic features and ML classification
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1) 

Lesion segmentation  (manually drawn Radio Therapy 
structures GTV)

2) 

Radiomic feature computation

3) 



Radiomic features 
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23

67

Radiomic features are computed according to the standardized definitions provided by 
the Image Biomarker Standardization Initiative (IBSI). 
[Zwanenburg A. et al. Radiology 2020;295: 328–38. https://doi.org/10.1148/radiol.2020191145.]

 107 radiomic features were extracted within the Gross Tumor Volume (GTV)



Nested-CV scheme for pipeline optimization

13

This procedure allows:
- a robust hyperparameter optimization 
- to provide a measure of the variability of the 

classifier performances on test data

Python packages used: Numpy, Pandas, Scipy, Scikit-learn



Results for histology classification 
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Random Forest AUC on the TEST SET
Histology classification L-RT Lung1 Total-L Total-L (only OS I and II)

TRAIN SET L-RT C.L. C.L. // //
Lung1 C.L. C.L. // //
Total-L // // 0.60 ± 0.07 //
Total-L (only OS I and II) // // // 0.72 ± 0.11

Analysis pipeline optimization 
with rigorous nested-CV 

• L-RT and Lung1 are 
separately too small and 
heterogeneous to provide 
results above the chance 
level.

• On the merged sample 
(Total-L), the classification 
performance is slighty above 
the chance level.

• It increases for reduced 
heterogeneity of the sample 
(restriction to OS I and II)

The variability of the 
performances on the test 
sets is high, due to the 
small sample sizes



Conclusions
● Drawing conclusions from the analysis of data samples of limited size with Radiomics, Machine 

Learning and Deep Learning approaches is quite common in the field of medical imaging

● Specific technical issues should be addressed in these cases, to ensure to have carried out:

○ efficient training and optimization with limited samples

○ rigorous evaluation of the robustness and reliability of the results

● As general guidelines:

○ Choose the simplest possible model to fit the data

○ Use nested CV for hyperparameter optimization and performance evaluation
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Thank you for your 
kind attention!

For further information and references contact me: 
leonardo.ubaldi@unifi.it 

Pisa, 17/02/2022


