Scintillator-³He Array for Deep-underground Experiments on the S-process

SHADES

Andreas Best

INFN Naples University of Naples "Federico II"

Synthesis of the elements

- Almost all elements > Li produced in stars
- A < Fe: charged-particle capture
- A > Fe: neutron capture (r-, s-process, p-process)
- ${}^{22}Ne(\alpha, n){}^{25}Mg$ one of the two main neutron sources for s process

22 Ne(α , n) 25 Mg physics case: production of the heavy elements, and more

- Residual elemental abundances attributed to other n-processes ${\rm N}_r = {\rm N}_{\odot}$ - ${\rm N}_s$
- Formation of early solar system cosmic grains in meteorites
- Astronomical observation of gamma-rays (COMPTEL, INTEGRAL)
- Mg isotope observations in stellar atmospheres

Reaction rate and effective energy

• How quickly does reaction proceed:

$$\langle \sigma v \rangle_{j,k} = \sqrt{\frac{8}{\pi \mu_{jk}}} (kT)^{-3/2} \int_0^\infty E \sigma(E) e^{-E/kT} dE$$

- Thermal energies in stars in keV range, far below Coulomb energy
- Tunneling combined with Maxwell-Boltzmann: Gamow-peak
- ²²Ne(α , n)²⁵Mg: kT \approx 30 keV (T = 0.3 GK), E_G \approx 600 keV

22 Ne(α , n) 25 Mg cross section

- Capabilities on surface exhausted (20 years since last data)
- Current lowest data 2 reactions/minute
- Covers one resonance close to Gamow
- 300 keV of upper limits. .
- Many states that can contribute
- Need improvement by more than 2 orders of magnitude

22 Ne(α , n) 25 Mg cross section

- Capabilities on surface exhausted (20 years since last data)
- Current lowest data 2 reactions/minute
- Covers one resonance close to Gamow
- 300 keV of upper limits. .
- Many states that can contribute
- Need improvement by more than 2 orders of magnitude

Low-energy states

E _n [keV]	E _x [keV]	E _α [keV]	Jπ	Neutron width [eV]
19.92	11112	589	2+	2095
72.82	11163	649	2+	5310
79.23	11169	656	3-	1940
187.95	11274	779	2+	410
194.01	11280	786	3-	1810
243.98	11328	843 ?	?	171
235 [14]	11319	832	2+	Total width = 250 eV

Table 1. Properties of states in ²⁶Mg between the neutron threshold and the 832 keV resonance. Values taken from [15], except for the last row, which is from [14].

- Recent nTOF study of energies and neutron widths (Massimi et al. 2017)
- 832 keV state still a bit unclear w.r.t. n/α channel
- No α widths are known

< □ > < 同 > < 回 > < 回 > < 回 >

Uncertainties

- Cross section at critical energies extremely low, unmeasured
- $\bullet\,$ Little information on low energy states $\rightarrow\,$ large uncertainty
- Two orders of magnitude variation in nucleosynthesis output

A. Best (UniNa/INFN-Na)

What to do?

- Drastic background reduction
- Drastic beam current increase
- Suppression/identification of beam-induced background

Detector array

- Require some sort of energy sensitivity
- Hybrid detector array: ³He counters & liquid scintillator
- High efficiency + energy sensitive
- Prototype built & tested

Time [ns]

EJ309

En = 0

³He counter

Background reduction

- Deep underground @ LNGS: Suppression of (thermal) neutron background by > 1000
- Additional clean detector material & PSD
- Extended gas target with enriched ²²Ne
- Total background pprox 1 count/hour

Beam-induced backgrounds

Q-values:

- ▶ ²²Ne = 478 keV
- \blacktriangleright ¹⁰B = 1059 keV
- ▶ $^{11}\mathrm{B} = 158~\mathrm{keV}$
- ▶ $^{13}\text{C} = 2216 \text{ keV}$

Top-of-the-line accelerator

- Specifically designed to fit nuclear astrophysics needs
- Reaction rates of < 1/hour:
 - Beam current (\approx 5× Jaeger et al.): push signal-noise ratio
 - Current stability: measurements of the order of weeks
 - Energy stability: must not drift over long periods
- 300 3500 kV: cover entire astrophysical energy range

Goals

- Cover from threshold to 3.5 MeV
- > two orders of magnitude improvement
- Comprehensive *R* matrix analysis
- Perform nucleosynthesis calculations with new data

Goals

R matrix courtesy of R. J. deBoer, University of Notre Dame

- Cover from threshold to 3.5 MeV
- > two orders of magnitude improvement
- Comprehensive *R* matrix analysis
- Perform nucleosynthesis calculations with new data

Timeline

- 5-year project, started February 2020
- Currently procuring detectors, target components
- First \sim 2 years
 - Target+detector assembly
 - Target characterisation
 - Detector background
 - DAQ development
 - Detector characterisation
- Then transport and assembly at LNGS
- Underground campaign at LUNA MV
- Data evaluation and astrophysical impact - collaboration with M. Pignatari/Univ. Hull

Timeline

- 5-year project, started February 2020
- Currently procuring detectors, target components
- First \sim 2 years
 - Target+detector assembly
 - Target characterisation
 - Detector background
 - DAQ development
 - Detector characterisation
- Then transport and assembly at LNGS
- Underground campaign at LUNA MV
- Data evaluation and astrophysical impact - collaboration with M. Pignatari/Univ. Hull
- Vacation

Summary

- ²²Ne(α, n)²⁵Mg critically important in astrophysics
- Measurement very challenging, impossible up to now (20 years since last data set)
- All the ingredients are here
 - Deep underground lab
 - New detection and DAQ techniques
 - Custom-made accelerator

European Research Council Established by the European Commission

(4) (日本)