
ATLAS DAQ 
and FTK

Preliminary remarks: 
- This is my current personal understanding
- I'm not a ROS expert

Outline:
- ATLAS T/DAQ overview
- ROS system & FTK
- DF evolution and FTK
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ATLAS T/DAQ overview
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ROS system (1)
● ROS PC: 

● 4 Robins, each one with 3 input S-links 
and 3 buffers (ROBs)

● Max input b/w: 
– ~ 480 MB/s per ROBIN
– ~ 2 GB/s per ROS

● Output: 2 Gb links, ~ 240 MB/s 

● ROB size: 64 MB, paged
● The ROB with biggest page size sets upper limit on number of events 

that can be inside the system (from ROS to EB) at each moment

● I.e.: 
– If fragment size = 4 kB →  16000 events   (OK)

– If fragment size = 16 kB →  4000 events     (critical)
● Current Robin PCI based; 

a prototype PCI express exists, but the ROB size is still 64 MB
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ROS system (2)
● Design L2 request rate: ~ 20 kHz 

● And it does not scale with size

Current H/W

Prototype ROS (very preliminary)
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ROS system for FTK (1)
● First approach: 

use “standard” ROD-ROB-ROS chain for buffering FTK output
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ROS system for FTK (1)
● First approach: 

use “standard” ROD-ROB-ROS chain for buffering FTK output
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ROS system for FTK (2)
● FTK Event size from 2.5 kB to 15 kB (@75 m-bias events), 

while the usual ATLAS ROB page size is ~ 1-2 kB
● N.B.: a page size of 15 kB limits the maximum number of events in the 

pre-EB system to ~4000 (too little, considering fluctuations)
●  use a round robin approach to increase the “effective depth”

● The L2 request rate to FTK ROS will be ~ 100 kHz, while the 
current ROS system was designed for 20 kHz
● Some prototypes reached 50 kHz 
●  use a round robin approach to reach 100 kHz

● So, use multiple ROSs to be activated according to the L1ID
● E.g.: ROS-3 used if L1ID%3==0

● If EvSize = 2.5 kB, @ 100 kHz → 250 MB/s
● One ROBIN would be enough (the ROS needs 4 Gb  nics)

● If EvSize = 15kB, @ 100 kHz →  1.5 GB/s (12 Gb/s)
● ~ a dozen of Gb/s NICs
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● In the current system L2 results are stored in few “pseudo” ROSs
● L2 results sent by L2PUs via ethernet
● EB is collecting fragments from both “real” ROSs and “pseudo” ROSs

● pROS PC: max Rate: ~ 4 kHz 
● It handles ~2000 input UDP connections and ~ 100 output TCP ones
● Application needs to be optimized/rewritten to reach ~ 20 kHz

What about pROS (aka L2RH)?
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● The pROS scenario remove buffer size limitations, FTK would
● Receive data from ID RODs
● Send output via ethernet (NB: 1.5 GB/s @15 kB event)
● We just need as much ROS PCs and NICs as the required B/W 

● Is it possible to send FTK output over ethernet?
● Or, use pROS PC with S-LINK cards but w/o ROBINs?

                                                                  

What about pROS?
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DF evolution
● Timescale: if approved, to be implemented during next shut-down
● A prototype under testing @P1: good results so far
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DF evolution
● Design: unify L2, EF and EB farms

● L2, DC, EB and EF functionalities in each HLT node
● A single HLT interface

● But keeping RoI concept!
● No changes in the ROS system
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DF evolution
● Decoupling data processing from data flow; on each node 

● one process takes care of  data movement (DCProxy)
● multiple processes  HLTPU in charge of event selection 

● All ROBs only requested once 
● Reduced number of network connections (one application per node) 

● But all the HLT nodes will act as L2
● Possibility to implement incremental event building 
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DF Evolution & FTK
● The new design will not impose limitations to FTK 

● Maybe it could provide additional flexibilities

● The FTK L2 algorithms developed for the current design can be 
transparently ported to the new one

● FTK fragments requested only once  
● Reduced requests to ROS (~5% for FTK ROS)

● If the FTK fragment is supposed to be accessed for each event (i.e.: 
@ 100 kHz), one could pre-fetch the FTK data in the DF proxy 
before waiting for the HLTPU request: 
● Of course, this opportunity depends on the FTK latency

● But the number of events in the DF system before full event building 
may increase: 
● This would effect the “real” ROS scenario (buffer size and page size), 

but not the pseudo-ROS one
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Conclusions

● The current ROB capacity and the FTK fragment size could reduce 
the max number of concurrent events inside the DF system

● Possible solution using redundant ROSs or ad hoc ROBINs 

● A “pseudo” ROS approach provides better scalability and 
avoids the ROB size limitations 
● pROS application shall be improved to support ~ 20 kHz

● Can FTK send output over ethernet? 

● The DF evolution seems to not entail additional limitations to FTK  
● IMO it could offer additional flexibility
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Spares
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DF prototype and ROB buffering

1. The new design does not entail any additional contribution to 

the fragment lifetime in ROS queues 
● As in the standard system ROS clears msg are sent

(Neglecting for the moment incremental EB strategies)

– After L2 rejection 

– After full event building (L2 accepted)

● We could even expect a small reduction of the lifetime

3. In the new design all the cores can act as L2PUs, but this 
does not increase the number of events in the system: at any 
moment the number of cores doing L2 task will be roughly 

the same as now   
● It depends only on the average L2 processing time
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Indeed (neglecting EB time) at any moment
● the number of fragments is the RobinQueues 

● == number of events in the DC system (i.e. upstream EB)

● == number of cores in the HLT 

is a Poissonian distribution with mean

                 n = L1Rate x AvgL2ProcTime

This means that, if AvgL2ProcTime = 40ms (L1Rate@100kH)

➔ ~ 4000 fragments in each ROB queues
➔ ~ 4000 HLT cores acting as L2PU

● The other cores are processing events already built 

DF prototype and ROB buffering

mailto:L1Rate@100kH
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