
ATLAS DAQ
and FTK

Preliminary remarks:
- This is my current personal understanding
- I'm not a ROS expert

Outline:
- ATLAS T/DAQ overview
- ROS system & FTK
- DF evolution and FTK

2

ATLAS T/DAQ overview

3

ROS system (1)
● ROS PC:

● 4 Robins, each one with 3 input S-links
and 3 buffers (ROBs)

● Max input b/w:
– ~ 480 MB/s per ROBIN
– ~ 2 GB/s per ROS

● Output: 2 Gb links, ~ 240 MB/s

● ROB size: 64 MB, paged
● The ROB with biggest page size sets upper limit on number of events

that can be inside the system (from ROS to EB) at each moment

● I.e.:
– If fragment size = 4 kB → 16000 events (OK)

– If fragment size = 16 kB → 4000 events (critical)
● Current Robin PCI based;

a prototype PCI express exists, but the ROB size is still 64 MB

4

ROS system (2)
● Design L2 request rate: ~ 20 kHz

● And it does not scale with size

Current H/W

Prototype ROS (very preliminary)

5

ROS system for FTK (1)
● First approach:

use “standard” ROD-ROB-ROS chain for buffering FTK output

ROSROSROS

RODRODROD

ROSROSL2SV

L1

ROSROSL2PU
ROSROSSFI

ROSROSpROS

DFM

L1 decision

L2 decision D
a
t
a

r
e
q
/
r
e
p
l
y

D
a
t
a

r
e
q
/
r
e
p
l
y

L2
 r
es
ul
t

L2 decision

6

ROS system for FTK (1)
● First approach:

use “standard” ROD-ROB-ROS chain for buffering FTK output

ROSROSROS

RODRODROD

ROSROSL2SV

L1

ROSROSL2PU
ROSROSSFI

ROSROSpROS

DFM

L1 decision

L2 decision D
a
t
a

r
e
q
/
r
e
p
l
y

D
a
t
a

r
e
q
/
r
e
p
l
y

L2
 r
es
ul
t

L2 decision

ROSROSFTK
ROS

RODRODFTK
ROD

FTK

7

ROS system for FTK (2)
● FTK Event size from 2.5 kB to 15 kB (@75 m-bias events),

while the usual ATLAS ROB page size is ~ 1-2 kB
● N.B.: a page size of 15 kB limits the maximum number of events in the

pre-EB system to ~4000 (too little, considering fluctuations)
● use a round robin approach to increase the “effective depth”

● The L2 request rate to FTK ROS will be ~ 100 kHz, while the
current ROS system was designed for 20 kHz
● Some prototypes reached 50 kHz
● use a round robin approach to reach 100 kHz

● So, use multiple ROSs to be activated according to the L1ID
● E.g.: ROS-3 used if L1ID%3==0

● If EvSize = 2.5 kB, @ 100 kHz → 250 MB/s
● One ROBIN would be enough (the ROS needs 4 Gb nics)

● If EvSize = 15kB, @ 100 kHz → 1.5 GB/s (12 Gb/s)
● ~ a dozen of Gb/s NICs

8

ROSROSROS

RODRODROD

ROSROSL2SV

L1

ROSROSL2PU
ROSROSSFI

ROSROSpROS

DFM

L1 decision

L2 decision D
a
t
a

r
e
q
/
r
e
p
l
y

D
a
t
a

r
e
q
/
r
e
p
l
y

L2
 r
es
ul
t

L2 decision

● In the current system L2 results are stored in few “pseudo” ROSs
● L2 results sent by L2PUs via ethernet
● EB is collecting fragments from both “real” ROSs and “pseudo” ROSs

● pROS PC: max Rate: ~ 4 kHz
● It handles ~2000 input UDP connections and ~ 100 output TCP ones
● Application needs to be optimized/rewritten to reach ~ 20 kHz

What about pROS (aka L2RH)?

3

9

ROSROSROS

RODRODROD

ROSROSL2SV

L1

ROSROSL2PU
ROSROSSFI

ROSROSpROS

DFM

L1 decision

L2 decision D
a
t
a

r
e
q
/
r
e
p
l
y

D
a
t
a

r
e
q
/
r
e
p
l
y

L2
 r
es
ul
t

L2 decision

ROSROSFTK
pROS

FTK

● The pROS scenario remove buffer size limitations, FTK would
● Receive data from ID RODs
● Send output via ethernet (NB: 1.5 GB/s @15 kB event)
● We just need as much ROS PCs and NICs as the required B/W

● Is it possible to send FTK output over ethernet?
● Or, use pROS PC with S-LINK cards but w/o ROBINs?

What about pROS?

10

DF evolution
● Timescale: if approved, to be implemented during next shut-down
● A prototype under testing @P1: good results so far

11

DF evolution
● Design: unify L2, EF and EB farms

● L2, DC, EB and EF functionalities in each HLT node
● A single HLT interface

● But keeping RoI concept!
● No changes in the ROS system

ROSROSROS

RODRODROD

ROSROSL2SV

L1

ROSROSL2PU
ROSROSSFI

ROSROSpROS

DFM

L1 decision

L2 decision

D
a
t
a

r
e
q
/
r
e
p
l
y

D
a
t
a

r
e
q
/
r
e
p
l
y

L2
 r
es
ul
t

L2 decision

ROSROSFTK
pROS

FTK
Current DF architecture

12

DF evolution
● Decoupling data processing from data flow; on each node

● one process takes care of data movement (DCProxy)
● multiple processes HLTPU in charge of event selection

● All ROBs only requested once
● Reduced number of network connections (one application per node)

● But all the HLT nodes will act as L2
● Possibility to implement incremental event building

ROSROSROS

RODRODROD

ROSROSL1RH

L1

ROSROSHLT
node

L1 decision

D
a
t
a

r
e
q
/
r
e
p
l
y

ROSROSFTK
pROS

FTK

HLT node

DF proxy

HLTPUHLTPUHLTPUHLTPUHLTPUHLTPUHLTPUHLTPU

New DF architecture

13

DF Evolution & FTK
● The new design will not impose limitations to FTK

● Maybe it could provide additional flexibilities

● The FTK L2 algorithms developed for the current design can be
transparently ported to the new one

● FTK fragments requested only once
● Reduced requests to ROS (~5% for FTK ROS)

● If the FTK fragment is supposed to be accessed for each event (i.e.:
@ 100 kHz), one could pre-fetch the FTK data in the DF proxy
before waiting for the HLTPU request:
● Of course, this opportunity depends on the FTK latency

● But the number of events in the DF system before full event building
may increase:
● This would effect the “real” ROS scenario (buffer size and page size),

but not the pseudo-ROS one

14

Conclusions

● The current ROB capacity and the FTK fragment size could reduce
the max number of concurrent events inside the DF system

● Possible solution using redundant ROSs or ad hoc ROBINs

● A “pseudo” ROS approach provides better scalability and
avoids the ROB size limitations
● pROS application shall be improved to support ~ 20 kHz

● Can FTK send output over ethernet?

● The DF evolution seems to not entail additional limitations to FTK
● IMO it could offer additional flexibility

15

Spares

16

DF prototype and ROB buffering

1. The new design does not entail any additional contribution to

the fragment lifetime in ROS queues
● As in the standard system ROS clears msg are sent

(Neglecting for the moment incremental EB strategies)

– After L2 rejection

– After full event building (L2 accepted)

● We could even expect a small reduction of the lifetime

3. In the new design all the cores can act as L2PUs, but this
does not increase the number of events in the system: at any
moment the number of cores doing L2 task will be roughly

the same as now
● It depends only on the average L2 processing time

17

Indeed (neglecting EB time) at any moment
● the number of fragments is the RobinQueues

● == number of events in the DC system (i.e. upstream EB)

● == number of cores in the HLT

is a Poissonian distribution with mean

 n = L1Rate x AvgL2ProcTime

This means that, if AvgL2ProcTime = 40ms (L1Rate@100kH)

➔ ~ 4000 fragments in each ROB queues
➔ ~ 4000 HLT cores acting as L2PU

● The other cores are processing events already built

DF prototype and ROB buffering

mailto:L1Rate@100kH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

