

Sciences

Fiber Tracker Readout BETA ASIC for the High Energy Cosmic Radiation Detection (HERD) facility

A.Sanmukh¹, D. Gascon¹, S. Gomez¹, A.Comerma¹, J. Mauricio¹, R. Manera¹, A. Sanuy¹.

ICCUB – Universitat de Barcelona (1)

HERD Status Report

16th Feb 2022

I. Table of contents

- I. HERD architecture.
- II. Preliminary SiPM measurements.
- III. Conclusions.

HERD BETA - Architecture

Fig 2: HERD BETA - Architecture Oscilloscope measurements

II. HERD performance: SPTR measurements with SiPM and blue light

The setup is as follows:

- Advanced Laser Diode Systems A.L.S. GmbH (PiL040X) at 405 nm and a tuned intensity level of 50%, jitter < 3 ps and < 45 ps pulse width.</p>
- Sensor: S13360-1350CS (Hamamatsu)
- Agilent MSO 9404A 4 GHz oscilloscope (20 GS/s).
- Several measurements are performed to identify the optimal threshold.

HERD performance: Analog Shaper output for HG path selection

Fig. Oscilloscope colour grade capture for various number of photons showing the Shaper Output for HG path selection

- Sensor used is Hamamstu S13360-1350CS 1.3 mm X 1.3 mm 50µm pixel pitch.
- □ Pulsed blue laser light at 405 nm and acquisition was synchronous with the laser light

II. HERD performance: SPTR measurements with SiPM

Bias voltage 54V (2V of Over-voltage)

Comparator Threshold selection: 48

Sensor: HPK S13360-1350CS

□ **Delay Time** is the delay between the leading edge of the laser trigger signal and the rising edge of HERD discriminated output.

Pulse width is the time width of the discriminated output signal.

II. HERD performance: SPTR measurements with SiPM

Bias voltage 54V (2V of Over-voltage)

Comparator Threshold selection: 56

Sensor: HPK S13360-1350CS

II. HERD performance: SPTR measurements with SiPM

SPTR result 200 Sounts 200 200 FWHM Sigma FWHM (ps) Width (ns) 704 SPTR sigma = 250.95 ps FWHM G = 590.95 ps Num events =1199.0 mu G = 40.471 ns st 150 O 100 SPTR sigma = 146.19 ps FWHM G+E = 556.32 psmu G + E = 40.261 nsΔ **Photon Count** Delay (ns)

Bias voltage 54V (2V of Over-voltage)

Sensor: HPK S13360-1350CS

Results are obtained by performing a Gaussian plus an exponential fit of the delay histogram.

- Best nSPTR HERD: FWHM is 590 ps \geq
- Best nSPTR HERD : Sigma is 250 ps \geq

EXCELENCE. MARÍA DE MAEZTU Institute of Cosmos Sciences

II. HERD performance: HG Output Amplitude Measurements

Sensor: HPK S13360-1350CS

- HG output Amplitude histogram plots acquired for 100k samples
- The individual histogram levels indicates:
 - HG Preamp output amplification depending on number of photons received by SiPM

Bias voltage 55V (3V of Over-voltage)

2/17/2022

II. HERD performance: HG Output Charge Measurements

Measurement of Electrical setup Latency time

- \checkmark For > 3 photons the delay is < 30 ns
- For > 10 photons the setup delay is ~18 ns and the HG peak amplitude measurement is 500 mV
- The delay added by the laser system is about 20 ns

The test setup latency is measured with the electrical setup using a waveform generator as an input to the HERD test PCB.

The measurement is performed as:

- First the delay is measured between the rising edge trigger signal of the waveform generator and the input pulse on the HERD test PCB (t1).
- Second with the same setup the delay is measured between the rising edge trigger signal of the waveform generator and the HERD comparator trigger output (t2).
- The difference (t2-t1) between these two delay measurements gives the actual setup delay.

2/17/2022

Conclusions and Future works

- □ The HERD BETA ASIC is functional w.r.t various configurations.
- \Box The delay of the trigger signal is < 30 ns for laser signals with > 3 pe
 - □ Converging asymptotically to 18 ns for large signals
- □ Very preliminary results on timing resolution 200-300 ps rms for large signals
 - Limited by present configuration (determined by FIT specification on power: 1 mW/ch)
 - □ Long time constant of high gain preamp causes baseline fluctuations (dark count pile up)
 - □ Signal rise time limited by preamp power consumption
 - Potentially both can be tuned, however slow control configuration problem prevents modification
 Will be solved in next prototype
 - We think that there's room to improve timing resolution but ASIC correction and extensive tests are needed: answer by the end of 2022
- Initial amplitude and charge measurements for HG output various peaks can be differentiated depending on the number of photons.
- □ Further measurements has to be carried out to characterise the ASIC

ANY QUESTIONS OR COMMENTS?

2/17/2022

Backup Slides

Measurement of Laser set up delay

Laser setup delay = Histogram delay* – measured electrical setup delay

* The delay time mentioned on slide no. 6,7

HERD BETA – ADC data readout Linearity & Error

- The linearity error is below 3% over the whole dynamic range for HG & LG paths.
- The ASIC provides a large dynamic range from 3800 pe to 0.1 pe (132 pC to 3.5 fC) as large as 15 bits
- The output saturates at 750 uA of input current for HG path selection and 12 mA input current for LG path selection.

HERD BETA – Analog Voltage measurement Linearity & Error

- The above plot shows the linearity error with auto gain path selection
- The linearity error is below 3.5% over the whole dynamic range.
- The ASIC provides a large dynamic range from 3800 pe to 0.1 pe (132 pC to 3.5 fC) as large as 15 bits

- The HERD BETA ASIC is fully functional as expected with various configurable dual gains, tunable peaking time and path selection modes.
- Power per channel is 1.2 mW and this will be scaled down to < 1 mW for final 64 channel ASIC as the common elements (band gap references, common bias) will be the same.
- A total Dynamic range from 4000 pe to 0.1 pe: 1 to 300 for HG path and 200 to 3800 for LG path.
- Rate of operation from 1kHz to 100 kHz with bipolar shaping and baseline restorer(gated baseline) options.
- □ A linearity error of less than 3% for all operating modes (HG, LG, Auto selection path)

The following studies has to be carried out:✓Comparator and single photon regime✓Characterization with SiPMs✓Crosstalk

