Dark Matter Direct Detection

Aldo Ianni INFN-LNGS

XXXIII International Seminar of Nuclear and Subnuclear Physics, «Francesco Romano»

June 7th, 2022

About me:

- After a PhD in Physics, research associate at Princeton Univ.
- Work at LNGS since 2001
 - Mainly experimental activity on solar neutrinos, dark matter and low background detectors
 - Phenomenology
- On leave in 2007 as lecturer at Princeton Univ.
- On leave from 2015 to 2018 to work at LSC, Spain as lab director
- Mainly experimental activity in the framework of Borexino, DarkSide-50, and SABRE
- Email: aldo.ianni@lngs.infn.it

A few numbers to keep in mind

- $M_{\odot} = 1.99 \times 10^{30} \text{ kg}$
- $L_{\odot} = 3.828 \times 10^{26} \text{ W} = 2.39 \times 10^{13} \text{ MeV/s}$ (no v)
- $1 \text{ kpc} = 3.086 \text{ x} 10^{19} \text{ m}$
- $H_0 = 100 \text{ x h km/s/Mpc}$ with h ~ 0.7
- $m_p = 1.6726 \times 10^{-24} \text{ g} = 938.27 \text{ MeV/c}^2$
- $M_{Pl} = 1.22 \times 10^{19} \text{ GeV/c}^2$
- $\hbar c = 197.327 \times 10^{-13} \text{ MeV cm}$
- 1 GeV⁻¹ = 0.197x10⁻¹³ cm
- 1 GeV⁻¹ = 6.58x10⁻²⁵ s
- $\rho_c = 2.775 \ h^2 \ 10^{11} \ M_{\odot}/Mpc^3 = 1.054 \ h^2 \ 10^{-5} \ GeV/c^2/cm^3$ = 5 $m_p/m^3 \sim 10^{-26} \ kg/m^3$

Introduction

- Modern cosmology includes a non-baryonic matter component
- This component accounts for ~26% of the critical energy density in the universe and 84% of the total matter density
- This dark matter component is mainly observed by its gravitationally effects on structures in the universe

Challenges for direct search

• Lack of knowledge of kind of particle we are hunting

• Lack of knowledge of interaction process

• Space of parameter is huge

An analogy: solar neutrinos in the late 1990s and today

General considerations on DM

Measurements to support evidence of DM in the universe

Mass-to-Light ratio in galaxies and clusters of galaxies

$$-\Omega_{\rm m} = \rho_{\rm m} / \rho_{\rm c} = (\rho_{\rm L} / \rho_{\rm c}) \mathbf{x} (M/L)$$
$$-\Omega_{\rm m} = \frac{\rho_{\rm L}}{\rho_{\rm c}} \left(\frac{M}{M_{\odot}}\right) \left(\frac{L_{\odot}}{L}\right)$$

- Temperature anisotropies in the CMB
- Gravitational lensing

Galaxy rotation curve and DM: NGC 3198 as a case study

Rotation curve: what do you expect?

Extension of central mass is r_0 How does v changes inside and outside the central mass?

A flat curve implies M(r) = k r

 $\rho(\mathbf{r}) \sim 1/r^2$ for a spherically symmetric halo about the center of galaxy

Build up a simple model

Exploit the model

Use exponential surface brigthness distribution: I(r) ∝ e^{-r/R_d}
– P. Salucci et al., Mon. Not. R. Astron. Soc. 378, 41-47 (2007)

•
$$v_d^2(r) = \frac{1}{2} \frac{G M_d}{R_d} (3.2x)^2 \left(I_0(1.6x) K_0(1.6x) - I_1(1.6x) K_1(1.6x) \right)$$

• With $x=r/R_{opt}$, $R_{opt}=3.2R_d$ and I_n , K_n modified Bessel functions

•
$$v^2(r) = v_d^2(r) + v_h^2(r)$$

• With
$$v_h(r) = \sqrt{\frac{4\pi G}{r}} \int_0^r dx \, \rho_h(x) x^2$$

Fit result

• Constraints to fit procedure:

— g ~ 2

- $-~\rho(8~kpc) \thicksim 0.4~GeV/c^2/cm^3 \thicksim 0.01~M_{\odot}/pc^3$
- Salucci et al. 2010: ρ_☉=0.43±0.15 GeV/c²/cm³

 $M_{h} = 5.3 \times 10^{11} M_{\odot}$

 $M_{h} / M_{d} = 33$

 $M_h / M_d (<40 \text{ kpc}) = 12$

 $M / L_V (< 40 \text{ kpc}) = 28$

 ρ (8 kpc) ~ 0.22 GeV/c²/cm³

Ω_m (r<40 kpc) ~ 0.02 Ω_m (r<100 kpc) ~ 0.07

How big is the DM halo?

• Simple model:
$$v_{rot}^2 = \begin{cases} v_0^2, r < r_* \\ \propto \frac{1}{r}, r > r_* \end{cases}$$

• Determine the mass: $M(r) = \begin{cases} v_0^2 r/G, \ r < r_* \\ v_0^2 r_*/G, \ r > r_* \end{cases}$

How big is the DM halo?

- Consider our MW galaxy $- R_{sun} = 8.5 \text{ kpc}$ $- v_0 \sim 220 \text{ km/s at} \geq 2R_{sun}$ $- v_{max} \sim 500 \text{ km/s}$ • Use: $\frac{dU}{dr} = \frac{GM(r)}{r^2}$ • Determine: $U(r) = \begin{cases} v_0^2 \left[ln \frac{r}{r_*} - 1 \right], \ r < r_* \\ v_0^2 r_*/r, \ r > r_* \end{cases}$ • Use: $\frac{1}{2}v_{max}^2 + U(R_{sun}) \le 0$ • $\frac{1}{2}v_{max}^2 + v_0^2 \left[ln \frac{Rsun}{r_*} - 1 \right] \le 0$ implies $r_* \ge 41$ kpc and $M_* = 4.6 \times 10^{11} M_{\odot}$
- With L_V = 1.4×10^{10} L_{\odot} , $M/L \geq 33$
- $\Omega_{\rm m} \ge 0.03$

Change halo density profile

Milky Way and Andromeda (scale < 700 kpc)

From the relative orbit equation determine:

$$\frac{dr}{dt} = \frac{r}{t} \frac{\sin \eta (\eta - \sin \eta)}{(1 - \cos \eta)^2} = \sqrt{\frac{GM}{a}} \frac{\sin \eta (\eta - \sin \eta)}{(1 - \cos \eta)^2}$$

Relative velocity of MW and M31 is -119 km/s

with dr/dt = -119 km/s t = 10 Gyr Turns out that η = 4.11 Use η to determine M

M/L ~ 100

Dark Matter in galaxy clusters

- Extension ~ 1 Mpc
- ~ 1000 galaxies
- Average velocity for member galaxy ~ 1000 km/s
- For a spherical symmetry gravitational system, using virial theorem: $2\frac{1}{2}M(3\bar{v}^2) = \frac{3}{5}\frac{GM^2}{R}$
- Determine: $M^{10^{15}} M_{\odot}$
- M/L ~ 100-200 and Ω_{m} ~ 0.1-0.2

DM in the Universe

Early universe evolution 10¹⁰ y, ~10⁻⁴ eV today growth of structures 10⁵ y, ~0.2 eV e⁻+ p → H + γ baryogenesis 10-100 s, ~0.1 MeV p+n ${\rightarrow} d{+}\gamma$, 2p+2n ${\rightarrow}\,^4\text{He}$ 1 s, ~1 MeV $\,\,\nu$ decoupling 10^{-5} s, ~0.2 GeV QCD phase transition 10^{-11} s, ~ 10^{2} GeV electroweak phase transition 10^{-36} s, ~ 10^{16} GeV quark-gluon plasma free W and Z in cosmic fluid

Fundamental question

• What is the role of DM in the universe evolution ?

Type of DM

CMB temperaure anysotropies

- Snapshot of the universe at rad. decoupling: $p+e \rightarrow H+\gamma$
- $\frac{\Delta \rho}{\rho} = \frac{4\Delta T}{T}$ density fluctuations in CMB matches fluctuations in matter before recombination

Cosmology parameters from CMB anysotropies

•
$$C(\theta) = \left\langle \frac{\Delta T(\vec{n})}{T} \; \frac{\Delta T(\vec{m})}{T} \right\rangle = \sum_{l} (2l+1)C_{l} \frac{P_{l}(\cos \theta)}{4\pi} \quad \text{with } \vec{n} \cdot \vec{m} = \cos \theta$$

• Structure of C_I is very sensitive to cosmology parameters

 $\Omega = \Omega_r + \Omega_m + \Omega_\lambda + \Omega_k \sim 1$ (location of 1st acoustic peak, k ~ 0)

$$\begin{split} &\Omega_{\rm r} \sim 5 {\rm x} 10^{-5} \\ &\Omega_{\rm b} \sim 0.04 \quad ({\rm ratio} \ 1^{\rm st} \ {\rm to} \ 2^{\rm nd} \ {\rm acoustic} \ {\rm peak}) \\ &\Omega_{\rm r} \sim 0.26 \ ({\rm also} \ {\rm from} \ {\rm BBN}) \ ({\rm ratio} \ 2^{\rm nd} \ {\rm to} \ 3^{\rm rd} \ {\rm acoustic} \ {\rm peak}) \\ &\Omega_{\lambda} \sim 0.7 \\ &\Omega_{\rm k} \sim 0 \end{split}$$

Density fluctuations in early universe

- Introduce a *density contrast*: $\delta = \Delta \rho / \rho$
- Today $\delta(0) \gtrsim 1$
- At radiation decoupling: $\delta \sim 10^{-5}$

$$- z_{dec} \sim 10^3$$
 and $t_{dec} \sim 3x10^5$ yr

• In a matter-dominated expanding universe

$$-\delta(t) = -\frac{3\Delta R}{R} \propto R(t) \propto 1/(1+z)$$

- $\delta(0) \sim (1 + z_{dec}) \, \delta(t_{dec}) \sim 10^{-2}$
- Observed fluctuations in CMB are too small to account for present structures distribution with only baryons

DM comes to the rescue

- Assume there is non-baryonic matter in the universe with $\Omega_{\rm m}$ ~ 0.26

•
$$\frac{\Omega_m(t)}{\Omega_r(t)} = \frac{\Omega_m(0)(1+z)^3}{\Omega_r(0)(1+z)^4} \approx 1$$

•
$$\frac{0.20}{5 \cdot 10^{-5}(1+z)} \approx 1 \implies z \sim 5000$$

- DM dominates on radiation earlier than baryons and will not interact with radiation
 - DM has more time and it is more efficient to achieve gravitational collapse for structures to grow
 - Baryons density contrast follows that of DM

Growth of structures

- Perturbation theory predicts that density fluctuations can produce growth, decay or oscillations in cosmic fluid
- In cosmic fluid baryon fluctuations can survive to recombination epoch (acoustic oscillations) if $M_b > 10^{13} M_{\odot}$
 - Proposed problem
- Fluctuation amplitude is reduced by photon diffusion (baryons) or by «hot DM» free-streaming damping
 - Hot DM affects fluctuations on large scales containing superclusters size mass
 - It prefers top-down structures formation
 - Observations (> 1 Mpc) agree better with bottom-up scenario, cold DM

Issues for further considerations: fluctuation amplitude damping

- For only baryonic matter
 - Silk damping will erase all fluctuations at small scale: survives only those with M_b $>10^{13}~M_{\odot}$
 - This will behave as acoustic waves (d < λ_J)
 - Top-down structure formation by fragmentation
 - Fragmentation to evolve requires $\Delta \rho / \rho \sim 10^{-3}$ at recombination
 - Not enough time to reach $\Delta\rho/\rho\sim 1$ today
- Collisionless DM
 - CDM has small velocity dispersion, zero pressure fluid
 - HDM or WDM non-small dispersion velocity, free-streaming damping
- Free-streaming damping
 - $t_{dispersion} = d/\sigma_v$ with d is the size of fluctuation, σ_v the velocity dispersion
 - Hubble time: $t_H = 1/H = \sqrt{3/(8\pi G\rho)}$
 - If d < $\lambda_J = \sigma_v \sqrt{\pi/G\rho}$, t_{dispersion} \lesssim t_H
 - dispersion in random direction for non-zero velocity dispersion produces amplitude damping

Issues for further considerations: CDM

• Characteristic time for CDM growth: free-fall time

$$- t_{FF} \propto 1/\sqrt{G\rho_m}$$

• Characteristic time for expansion: Hubble time

- Hubble time:
$$t_H = 1/H = \sqrt{3/8\pi G\rho}$$

• This implies

- ${t_H}/{t_{FF}} \propto \sqrt{{\rho_m}/{\rho_r}} < 1$ in rad. dominated era (suppression of growth)

$$-\frac{t_H}{t_{FF}} \propto \sqrt{\frac{\rho_m}{\rho_r}} > 1$$
 in mat. dominated era

Lesson from CMB

- There should be DM in the universe to justify today density contrast
- DM dominates on baryonic matter
- DM is predominantly cold
- Structures we observe today are due to DM effect in the evolution of universe

Gravitational lensing

DM distribution

The bullet cluster

• Observed collision between two clusters

- Gas gravitationally trapped in clusters have ~10 keV temperature
 - X-ray spectrum provides gas distribution
- Gravitational lensing provide DM distribution

Cosmic collisions

Cosmic collisions

Andromeda galaxy in visible band

Andromeda galaxy in infrared band

Lesson from Bullet Cluster

• Determine profile of baryons from X-ray emission

- Thermal velocity of protons ~ $(kT/m_p)^{1/2}$ ~ $v_{galaxies}$ ~ $(GM/R)^{1/2}$, implies kT ~ 10 keV

- Determine DM profile from gravitational lensing
- Compare observed distributions with simulations assuming DM self-interaction
- Result: $\sigma/m \leq 1 \text{ cm}^2/g$

Lesson from Bullet Cluster

- Consider a cluster of galaxies (1 Mpc, $10^{15} M_{\odot}$)
- Consider a DM with ρ ~ 1 GeV/cm^3 ~ 1.78x10^{-24} g/cm^3
- For $\sigma/m \sim 1$ cm²/g, the mean free path is order of 1 Mpc $-\lambda = 1/n\sigma = m/\rho\sigma$
 - Proposed problem
- Consider a DM particle mass of 1 GeV/c²
- It turns out that $\sigma \sim 2x10^{-24} \text{ cm}^2$
- If $\sigma \sim G_F^2 m^2 \sim 10^{-10} \text{ GeV}^{-2} = 4x10^{-38} \text{ cm}^2$

Small scale challenges to CDM paradigm

- From observations at scale < 1Mpc follows:
 - The missing satellites problem
 - Simulations of DM haloes at MW scale predicts order of 10^5 subhaloes with M>10^7 M_{\odot}
 - Order of 100 with M~300M $_{\odot}$ are observed
 - The cusp-core problem
 - Simulations predicts $\rho(\text{r~0})$ ~ r $^{\text{-1}}$
 - Observation shows ρ(r~0) ~ constant
 - Simulations predicts more DM at the core than observed
 - The too-big-to-fail problem
 - Local universe contains fewer galaxies with core density of order $10^7 M_{\odot}$ wrt simulations
 - Predicted large DM haloes could have not failed to form stars, why not so many stars?
- A possible solution is given by Self-Interacting DM with σ/m $<10~cm^2/g$
 - To comply with Bullet cluster constraint this requires σ ~ 1/v

Baryonic Tully-Fisher relation

Star dominated galaxies Gas dominated galaxies - - - - standard cosmology prediction

Observation: $M_b \propto v^4$

Tully-Fisher relation and MOND

• In MOdified Newtonian Dynamics one assumes:

$$- a = \begin{cases} a_N , a_N \gg a_0 \\ \sqrt{a_N a_0} , a_N \ll a_0 \end{cases}$$

- $-a_0 \sim 10^{-8} \text{ cm/s}^2$
- incidentally it turns out that $a_0 \sim c H_0/6$
- Applying MOND one finds:

$$-\frac{v^2}{r} = \sqrt{\frac{G M_b a_0}{r^2}}$$
$$-M_b = \frac{v^4}{G a_0}$$

Self-Interacting DM (SIDM)

• SIDM could mitigate anomalies at < 1Mpc scale

•
$$R_{scat} = \frac{\rho_{\chi}}{m} \sigma v_{rel} =$$

 $0.1Gy^{-1} \left(\frac{\rho_{\chi}}{0.1 M_{\odot} pc^{-3}}\right) \left(\frac{v_{rel}}{50 \ km/s}\right) \left(\frac{\sigma/m}{1 \ cm^2/g}\right)$

- For Dwarf galaxies $R_{scat} \sim 1$ in 10 Gy for $\sigma/m = 1$ $cm^2/g \sim 2x10^{-24} cm^2/GeV$
- Compare different scale constraints on σ/m suggests σ ^ 1/v

S. Tulin, H.-B. Yu / Physics Reports 730 (2018) 1-57

Table 1

Summary of positive observations and constraints on self-interaction cross section per DM mass. Italicized observations are based *systems*, while the rest are derived from sets of multiple systems. Limits quoted, which assume constant σ/m , may be interpreted as a fu velocity v_{rel} provided σ/m is not steeply velocity-dependent. References noted here are limited to those containing quoted self-inter values. Further references, including original studies of observations, are cited in the corresponding sections below.

Positive observations	σ/m	$v_{ m rel}$	Observation
Cores in spiral galaxies (dwarf/LSB galaxies)	$\gtrsim 1 \text{ cm}^2/\text{g}$	30–200 km/s	Rotation curves
Too-big-to-fail problem Milky Way Local Group	$\gtrsim 0.6 \text{ cm}^2/\text{g}$ $\gtrsim 0.5 \text{ cm}^2/\text{g}$	50 km/s 50 km/s	Stellar dispersion Stellar dispersion
Cores in clusters	~0.1 cm ² /g	1500 km/s	Stellar dispersion, lensing
Abell 3827 subhalo merger	\sim 1.5 cm ² /g	1500 km/s	DM-galaxy offset
Abell 520 cluster merger	$\sim 1 \text{ cm}^2/\text{g}$	2000-3000 km/s	DM-galaxy offset
Constraints			
Halo shapes/ellipticity	$\lesssim 1 \text{ cm}^2/\text{g}$	1300 km/s	Cluster lensing surveys
Substructure mergers	$\lesssim 2 \text{ cm}^2/\text{g}$	~500-4000 km/s	DM-galaxy offset
Merging clusters	≲few cm²/g	2000-4000 km/s	Post-merger halo survival (Scattering depth $\tau < 1$)
Bullet Cluster	$\lesssim 0.7 \text{ cm}^2/\text{g}$	4000 km/s	Mass-to-light ratio

A possible analogy

• Observations show a decreasing σ/m with increasing structure size

Partial summary

- DM is dominant in the universe, mainly CDM
- DM local density ~ 0.4 GeV/c²/cm³
- Extension of halo unknown (> 40 kpc)
- $\sigma/m \sim 1 \text{ cm}^2/g$
- $\sigma \sim 1/v$

What DM is made of ?

What DM is made of ?

- A particle confined in 10 kpc scale moving at 100 km/s:
 - De Broglie wavelength: $\lambda \leq 0.37 \left(\frac{eV}{mc^2}\right) cm$
 - $mc^2 \ge 10^{-22} eV$
 - For a fermion: Number of states/V = $g_i 4\pi p^2 dp/h^3$

$$-(mc^2)^4 \ge \frac{3}{4\pi} \frac{\rho h^3}{\mathsf{g}_i v^3} = (30 \ eV)^4$$

- A macroscopic object moving around
 - In order to not disrupt globular clusters: $< 10^3~M_{\odot} \simeq 10^{70}~eV$
- DM mass spread from 10⁻²² to 10⁷⁰ eV. What is it?

Thermal decoupling

- Consider the cosmic fluid as a thermal bath at temperature T in the expanding early universe
- Particle species are in equilibrium if: $-\Gamma(T) = n \cdot v \cdot \sigma > H(T)$ with $n \sim R^{-3} \sim T^3$
- When $\Gamma(T) \sim H(T)$ we determine a freeze-out (FO) temperature, T_{FO}
- In early, radiation-dominated, universe:

$$-H = \sqrt{\frac{8\pi G}{3}\rho_r} \approx 2.35 \frac{T^2}{M_{Pl}}$$
 with $M_{Pl} = 1.22 \times 10^{19} \, GeV$

Asymptotic equilibrium number density

• For a thermal bath at temperature T

$$n_{eq.} \sim \begin{cases} T^3, & T \gg m \\ (mT)^{3/2} e^{-m/T}, & T \ll m \end{cases}$$

Hot relic example: neutrino decoupling

- We need to determine T_{FO} such that $\Gamma(T_{FO}) \sim H(T_{FO})$
- It turns out that: $T^3 \cdot G_F^2 \cdot T^2 \sim 2.35 T^2/M_{Pl}$
- $T_{FO} \sim 1 \text{ MeV}$
- Assuming entropy is conserved, define Y = n/s with s = entropy density and sR³ = const and Y ~ nR³
- $Y(T_{FO}) = \frac{\rho_{FO}}{m s_{FO}} = Y(T_0)$ for a given species

•
$$\frac{\rho_0}{\rho_c} = \frac{m n_0}{\rho_c} = \frac{m Y_{FO} s_0}{\rho_c} \propto m$$

•
$$\frac{\rho_{\nu}}{\rho_{c}} = \frac{n_{\nu} \sum_{i} m_{i} c^{2}}{\rho_{c}} = \frac{113 \nu/cm^{3} \sum_{i} m_{i} c^{2}}{1.05 \times 10^{-5} h^{2} GeV/cm^{3}} \implies \Omega_{\nu} h^{2} \sim \frac{\sum_{i} m_{i} c^{2}}{93 eV}$$
- From neutrino oscillation experiments: $m_{\nu} < eV$

Cold relic: WIMP example

• Consider a Weakly Interacting Massive Particle $-\sigma \sim G_F^2 E^2 \sim 10^{-10} (E/GeV)^2 GeV^{-2} \sim 4x10^{-38} (E/GeV)^2 cm^2$

- for comparison:
$$\sigma_{\overline{\nu}_e + p \rightarrow e^+ + n} \approx 10^{-37} \left(\frac{E}{GeV}\right)^2 \text{ cm}^2$$

•
$$(mT)^{3/2}e^{-m/T} \sigma \sim 2.35 \frac{T^2}{M_{Pl}}$$

• Use x=m/T

•
$$\sqrt{x} e^{-x} = \frac{2.35}{m \sigma M_{Pl}} \sim 10^{-15}$$

- For m ~ 100 GeV, x ~ 35 at FO
- For m ~ 1 GeV, x ~ 30 at FO

• $\Omega_{WIMP} = \frac{m n(T_0)}{\rho_c} = \frac{m T_0^3}{\rho_c} \frac{n(T_0)}{T_0^3} = \frac{m T_0^3}{\rho_c} \frac{n(T_{FO})}{T_{FO}^3}$ $-T_{0} = 2x10^{-4} \text{ eV}$ • $\Omega_{WIMP} = x_{FO} \frac{T_0^3}{\rho_c} \frac{n(T_{FO})}{T_0^2} = x_{FO} \frac{T_0^3}{\rho_c} \frac{2.35}{M_{Pl}\sigma}$ - after using $n(T_{FO}) = 2.35 \frac{T_{FO}^2}{M_{PI}\sigma}$ • $\frac{\Omega_{WIMP}}{0.3} = \frac{x_{FO}}{30} \frac{4 \times 10^{-9} \, GeV^{-2}}{\sigma}$

 $-4 \times 10^{-9} GeV^{-2} = 1.6 \times 10^{-36} \text{ cm}^2$

• Determine WIMP velocity at FO

$$-\frac{3}{2}kT = \frac{1}{2}mc^{2}\beta^{2}$$

- For x = mc²/kT ~ 30, v ~ 0.3c

• $\langle \sigma v \rangle \approx 4 \times 10^{-9} \, GeV^{-2} \, 0.3c = 1.4 \times 10^{-26} \, cm^3/s$

•
$$\sigma_{EW} \sim G_F^2 T_{FO}^2 \sim G_F^2 \left(\frac{m_{EW}}{30}\right)^2 \sim 10^{-10} \text{ GeV}^{-4} \left(\frac{200 \text{ GeV}}{30}\right)^2 \sim 4 \times 10^{-9} \text{ GeV}^{-2}$$

• The electroweak pair-annihilation cross section at T_{FO} gives the proper relic energy density: **WIMP miracle**!

- Is this argument peculiar to electroweak scale?
- To obtain the «right» relic density we need:
 - $-~\sigma \sim 10^{\text{-8}} 10^{\text{-9}}~GeV^{\text{-2}}$
 - x = m/T >>1, i.e. $m \cdot \sigma \cdot M_{Pl} >>1$
 - From dimensional analysis: $\sigma\sim\alpha_{\chi}/m^2$ which needs to be of the «right» order given α_{χ} and m
- It turns out that with the «right» cross section one needs m > 10 meV
- On the other side σ cannot be arbitrary large (<4 π /m²):

$$-\frac{\Omega_{WIMP}}{0.3} \gtrsim 10^{-8} \, GeV^{-2} \frac{m^2}{4\pi} \implies m \lesssim 120 \, TeV$$

Non-thermal DM production

- There could be non-thermal production of DM
- A particle species φ with $m_{\varphi} > m_{\chi}$ is produced in early universe
- ϕ decays to χ when this latter is already out of equilibrium

•
$$\Omega_{\chi} = \frac{m_{\chi}}{m_{\phi}} \Omega_{\phi}$$

Experimental search for DM

Fundamental assumption: DM does not only interact gravitationally

The quest for Dark Matter

 χ = DM particle q = Standard Model particle

$\chi + (A, Z) \longrightarrow \chi' + (A, Z)^*$

• The invariant mass:

$$- s = (E_{\chi} + E_A)^2 - (\vec{p}_{\chi} + \vec{p}_A)^2 = m_{\chi}^2 + m_A^2 + 2(E_{\chi}E_A - \vec{p}_{\chi} \cdot \vec{p}_A)$$

• In Lab frame:
$$s = m_{\chi}^2 + m_A^2 + 2(T_{\chi} + m_{\chi})m_A$$

• $v_A \simeq 10^{-3}c$

•
$$(m_{\chi} + m_A) \left(1 + \frac{m_A T}{(m_{\chi} + m_A)^2}\right) = m_{\chi} + \frac{p_{CM}^2}{2m_{\chi}} + m_A + \frac{p_{CM}^2}{2m_A}$$

• $p_{CM}^2 = \frac{2m_{\chi}m_A^2 T}{(m_{\chi} + m_A)^2} = \mu^2 v^2$ with $\mu = \frac{m_{\chi}m_A}{(m_{\chi} + m_A)}$
• $E_A^{Lab} \le \frac{(2p_{CM})^2}{2m_A} = 2\frac{\mu^2 v^2}{m_A}$

• For $m_{\chi} \sim m_A$ follows $E_A^{Lab} \leq \frac{Av^2}{2} \sim A \ 10^{-6} \text{ GeV} \sim A \text{ keV}$

WIMPs

 Weakly Interactive Massive Particles in equilibrium with quarks and leptons in the early universe as a generic class of cold DM candidate

for the last ~ 20 years the main scenario for DM direct detection

- Mass ~ 1 1000 GeV/c²
- $< \sigma_{ann}v > \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$ gives the correct relic density
- Local number density ~ $10^{-1} 10^{-4}$ cm⁻³
- Flux on Earth for a 100 GeV/c² WIMP ~ $3x10^5$ cm⁻²s⁻¹ with ρ ~0.4 GeV/cm³
 - ⁸B solar neutrino flux 5x10⁶ cm⁻² s⁻¹

How many WIMPs around us?

• For ρ_{χ} ~ 0.4 GeV/c²·cm³

•
$$n_{\chi} = \begin{cases} 4 \times 10^{-3} & m_{\chi} = 100 \ GeV/c^2 \\ 0.4 & m_{\chi} = 1 \ GeV/c^2 \end{cases}$$

• In 1 L

• N=
$$\begin{cases} 4 & m_{\chi} = 100 \; GeV/c^2 \\ 400 & m_{\chi} = 1 \; GeV/c^2 \end{cases}$$

Expected rate for WIMPs

$$R = N_t \times \sigma_{\chi A} \times \frac{\rho_{\chi}}{m_{\chi}} \times \langle v \rangle$$

$$R \sim 0.2 \frac{\text{events}}{\text{kg year}} \left(\frac{100}{A} \times \frac{\sigma_{\chi A}}{10^{-38} \text{cm}^2} \times \frac{\langle v \rangle}{250 \text{km/s}} \times \frac{\rho_{\chi}}{0.4 \text{GeV/cm}^3} \times \frac{100 \text{GeV/c}^2}{m_{\chi}} \right)$$

Exposure = 1 ton x year Events ~ 200, equivalent to ~**6x10**⁻³ μ**Bq/kg** 1 μBq/kg of radon gives ~ 31500 decays Need reduction factor > 200 for such a low background level!!!

Direct Search for WIMPs: nuclear recoil tagging

Goodman and Witten, PRD31, 1985

Velocity Distribution

 V_{min} (E_r, M_{χ}, A)

68

Recoil detection: a matter of background

• 1ppt ^{238}U ~ 10 $\mu\text{Bq/kg}$

• 1ppt ^{232}Th ~ 4 $\mu\text{Bq/kg}$

- WIMP signal ~ $10^{-2} \mu Bq/kg$
- Need strong background rejection techniques

What is a Deep Underground Lab (DUL) ?

World map of DULs

Excavated volume in DULs

Background in DM, double beta decay and solar neutrino experiments

Plot by R. Geitskell at DM2014

What can we learn from DM Direct Search?

"Standard" WIMP cross-section

Spin Independent interaction: $\sigma^{SI}(E_r) = \sigma_p^{SI} \left[Z + (A - Z) \right] \frac{f_n}{f_p}^2 \left[\frac{\mu}{\mu_p} \right]^2 F_{SI}^2(E_r)$

with F(0) ~ 1. So for the "standard" case f_{p} = f_{n} , σ^{SI} ~ A^{2}

Spin Dependent interaction: $\sigma^{SD}(E_r) = \sigma_p^{SD} \frac{4}{3} \frac{J+1}{J} \left(\langle S_p \rangle + \langle S_n \rangle \frac{f_n}{f_p} \right)^2 \left(\frac{\mu}{\mu_p} \right)^2 F_{SD}^2(E_r)$

 $\sigma^{sl}/\sigma^{sD} \sim A^2$

. . .

Deviations from the "standard" scenario are considered: Isospin Violating Interactions

 $f_n/f_p \sim -0.7$ reduces the coupling with Xe target (Z,N) = (54, 77) Electromagnetic coupling

Important to use different target detectors

Different target: comparison

- Both SI and SD can contribute at the same time
- Xenon:
 - (Z,N) = (54,78) BR = 26.9% $J^{\pi} = 0^+$ p/n = 0.69
 - (Z,N) = (54,75) BR = 26.4% $J^{\pi} = 1/2^+ p/n = 0.72$
 - (Z,N) = (54,80) BR = 10.4% J^{π} = 0⁺ p/n = 0.68
- Argon:

- (Z,N) = (18,22) BR = 99.6% $J^{\pi} = 0^+ p/n = 0.82$

• Na:

- (Z,N) = (11,12) BR = 100% $J^{\pi} = 3/2^+$ p/n = 0.92

• |:

- (Z,N) = (53,74) BR = 100% J^{π} = 5/2⁺ p/n = 0.72

WIMPs Detection Methods

Technologies

- Cryogenic solid state
 - Ionization spectrometer + bolometer operated at < 100mK
 - SuperCDMS(Si and Ge); CRESST(Ca); EDELWEISS(Ge)
- Two-phase TPC with LXe (XENON,LUX/LZ,PandaX) or LAr (DarkSide, ArDM, DEAP)

Scintillation + ionization

- Scintillator crystal detectors
 - DAMA/LIBRA ANAIS COSINE (Nal), CoGeNT (Ge),CDEX(Ge), KIMS(CsI), XMASS(LXe), DEAP(LAr)
- Spherical gas TPC and SuperHeated detectors

WIMPs signal and background

Signal

- Low energy nuclear recoils (1 100 keV)
- Low rate (~ few counts/year/ton at 10⁻⁴⁷ cm² SI and 100 GeV/c²)
- No specific features in recoil spectrum

Background

- Electron Recoils (ER) from e, γ radioactivity
 - $\checkmark\,$ can be rejected by a number of discrimination cuts
- Nuclear Recoils (NR) from radiogenic and cosmogenic neutrons
- Solar/Atmospheric/Relic Supernova neutrinos:
 - ✓ Elastic Scattering interactions will limit the sensitivity depending on the ER rejection power of the experiment
 - ✓ Neutrino-nucleus coherent interactions set the limiting sensitivity

Background

Cosmogenic Neutrons

- Flux at Gran Sasso lab:
 ✓ 2.4 m⁻² day⁻¹
 ✓ 0.7 m⁻² day⁻¹ for > 10 MeV
 Expected rate ~ 3×10⁻³³ /s/atom
 WIMPS rate ~ 10⁻³⁴ /s/atom
- Neutrons from surrounding rocks reduced by shielding
 ✓ In DS-50 3m of water ~ 10⁻³ and 0.04 from 1.5m of liquid scintillator: ~4 ×10⁻⁵

²³⁸U chain

²³²Th chain

Strategy to reduce background

- Design detector with active and passive shielding
- Advance cleaning of detector components in clean room environment
- Assemblying of detector components in radon-free environment
- Exploit offline reduction after extensive calibration campaign

Radon-free clean room (Rn < 100 mBq/m3)

Cleaning

Inside CR: steel, copper, teflon, brass parts cleaned and baked before storing in Rn-tight bags

Pickling and passivation of surfaces, de-gassing

Advance cleaning of as-built large vessels and fluid handling system

DS-50 TPC

WIMPs Recoil Spectrum

 $50 \text{ GeV}, 10^{-45} \text{ cm}^2$

Solar Neutrinos Background in the NR channel

- v-nucleus coherent scattering
 - Maximum recoil energy for ⁸B neutrinos = 4.3 keV
 - Flux of ${}^{8}B \sim 5.10^{6} \text{ cm}^{-2}\text{s}^{-1}$

Solar Neutrinos as Background in ER channel

"Neutrino floor" for DM

Exclusion plot: example

Two-phase TPC and background rejection

Scintillation and Ionization Discrimination

PSD FoM

CRESST Detectors

Background rejection: an example from CRESST

CRESST Crystal

300 g Detector Module

The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

Direct Dark Matter search with liquid Xe and Ar in a two-phase TPC

Features of LAr and LXe

- High scintillation yield (> 40000 photons/MeV)
- High intrinsic purity
- Unique capability to produce scintillation and drifting the ionization charge to > 1m length
- Possibility to extract the charge into gas phase and produce secondary scintillation

Liquified noble gases as WIMPs target

	Ar	Хе
Atomic number	18	54
Mean atomic mass	40	131.3
Boiling point @ 1atm [K]	87.3	165.0
Density for liquid [g/cm ³]	1.40	2.94
Volume fraction in atmosphere [ppm]	9340	0.09
Scintillation λ [nm]	128	178
Scint. fast component [ns]	7	3
Scint. Slow component [ns]	1600	27

Two-phase TPC at Work: basic

Lower PMTs array

Lower PMTs array

S1 measures energy and time of event

S2 measures position of event in LAr and is proportional to the fraction of charge that escapes recombination (this fraction depends on the drift field) S2/S1 = f(dE/dx) important for ER vs NR discrimination Drift time allows to measure z-coordinate at < mm level S2 allows to measure x-y coordinates at mm level

Scintillation and charge in LAr and LXe

- In absence of electric field scintillation of NR is quenched (~0.25) wrt to ER: keV_{NR} = 4keV_{ER}
- With electric field the yield for ER is reduced more than for NR
- Energy deposit produces ionization and excitation
 - ionization/excitation ~ 0.2
 - excitation produces scintillation
- dE/dx larger for NR: larger density of excited atoms (directly or by ionization)
 - Increases quenching: $Ar^* + Ar^* \rightarrow Ar + Ar + heat$
 - Decreases proportional charge collected, more recombination

LAr two-phase TPC at Work: signals

Pulse Shape Discrimination in LAr

Scintillation and Ionization Discrimination

PSD FoM

Two-phase TPC at Work: FoM for background discrimination

Background reduction performed by exploiting

a) Pulse shape of S1 through a parameter which measures the fraction of fast to slow component in scintillation.

$$F_{90} = \frac{\int_{0}^{90ns} f_{S_1}(t)dt}{\int_{0}^{\infty} f_{S_1}(t)dt}$$

b) S2/S1: larger for e-like

DS-50 TPC details

Fiducial Volume Selection in LUX

LUX coll., Rev. Lett. 112, 091303 (2014)

Calibrations for ER and NR response

- ^{83m}Kr: 1.8h half-life monoenergetic, injected and uniformly distributed in FM
 - 31.5keV + 9.4keV = 41.5keV line
- CH_3T (tritiated methane): injected and spatially uniform, $Q_\beta = 18.6$ keV
- Deuterium-Deuterium neutron generator: 2.5
 MeV monoenergetic (d+d→³He+n)
- AmBe neutron source
 - ${}^{241}\text{Am} \rightarrow \alpha + {}^{9}\text{Be} \rightarrow {}^{12}\text{C} + n + 5.71\text{MeV}$
- External gamma-ray sources

TPC energy calibration

- For LAr internal calibration performed with ³⁹Ar and with ^{83m}Kr
- ^{83m}Kr from ⁸³Rb (τ=124.4 days) prepared in form of RbCl and adsorbed on low radon (<10mBq/kg) charcol
- For DS-50 initial activity of ⁸³Rb was 8.5 kBq
- ^{83m}Kr ($\tau\text{=}2.64$ h) escapes charcoal, passes 0.5μ filter and radon trap and goes into the TPC
- ^{83m}Kr produces a single deposition of 41.5 keV (32.1+9.4)

Light yield @ null field

³⁹Ar + ^{83m}Kr energy calibration

Light Yield @ 200V/cm

Calibration of the NR scale

$$E_{ER} = w(n_{\gamma} + n_{e})$$

$$E_{NR} = w(n_{\gamma} + n_{e})\frac{1}{Q}$$
 Q=quenching factor

$$w_{Xe} \sim 14 \text{keV} w_{Ar} \sim 24 \text{keV}$$

$$S_{1}(LAr) = L_{Y} \cdot E_{ER} = L_{Y} \cdot Q(E_{NR}) \cdot E_{NR}$$
$$4E_{ER} \approx E_{NR}$$

Calibration of PSD parameters

LUX coll., Rev. Lett. 112, 091303 (2014)

LUX 2013 results

LUX data 85.3 live-days 118 kg 160 events in [2,30]phe 0.64 ER leakage with 50% NR acceptance

1DRU = 1 count/keV/kg/day	Source	Background rate [mDRU]
	γ–rays ¹²⁷ Xe ²¹⁴ Pb	1.8±0.4 0.5±0.1 0.11-0.22 (90% C.L.)
	⁸⁵ Kr	0.13±0.07
	Total predicted Total observed	2.6±0.4 3.6±0.3

117

PandaX-II Run-9

Discrimination using S2/S1 in XENON100

⁶⁰Co, ²³²Th and ²⁴¹AmBe calibration

99.5% ER rejection @ 50% NR acceptance

XENON100: No Signal Observed

225 live days, 34kg fiducial:

likelihood analysis: background-only p-value

Expected WIMPs Signal in LAr

Exposure of 1 ton-year gives about 40 events with these assumptions

The problem of ³⁹Ar

 \checkmark Ar naturally present in the atmosphere at 1% level

- ✓ ³⁹Ar formed by cosmic muons interactions
 - ⁴⁰K(n,2n)³⁹Ar
- ✓ ³⁹Ar is a β emitter with Q_{β}=565 keV and T_{1/2}=269 years
- ✓ In Ar from the atmosphere, ³⁹Ar is at the level of 1 Bq/kg
 - ~ 9×10⁴ decays/kg/day
 - WIMPs(100GeV, 10⁻⁴⁵ cm²) ~ 10⁻⁴ events/kg/day

DS-50 @ LNGS

Rn-free clean room

(1-10 mBq/m³ in 110 m³) Used for assembling TPC and deployment

Water Cherenkov muon veto: 10³ m³ H₂O with 76/80 8" PMTs

Boron-loaded liquid scintillator

(5% TMB + 95% PC) as neutron veto with 108/110 8" PMTs + 1.4 g/l PPO

150kg LAr TPC with 2 x 19 3" PMTs AAr with 1Bq/kg ³⁹Ar UAr with < 0.7 mBq/kg ³⁹Ar

Cryogenic for DS-50 TPC

TPC hanging in LSV

•

Total inventory of the devices 110 new PMTs for the neutron veto 80 old PMT from CTF for the muon veto plus a few spares

The Neutron Veto: general idea

Neutron veto

30 tons of boron-loaded liquid scintillator
 > 50% TMB [B(OCH₃)₃] + 50% PC + 3 g/l PPO

 $B(OCH_3)_3 + 3H_2O \rightarrow H_3BO_3 + 3CH_3OH$

 ${}^{10}B(19.9\%) + n \xrightarrow{7} Li^{*} + \alpha(1471 \text{ keV}), \ {}^{7}Li^{*} \rightarrow {}^{7}Li + \gamma(478 \text{ keV}), 93.7\%$

- 108 Hamamatsu R5912 8" PMTs with QE = 37% @ 408nm
- High reflectivity of inner surface of containment vessel
- n-veto expected performance: < 1 event in 3 years after n-veto rejection and TPC cuts

The Neutron Veto in DarkSide50

n + ¹⁰B
$$4^{7}$$
Li (1015 keV) + α (1775 keV) (6.4%)
7Li* (839 keV) + α (1471 keV) (93.7%)
 4^{7} Li + γ (478 keV)

Neutron Veto Efficiency

Efficiency from capture signal alone at > 99% (from calibrations and simulations)

- ~0.6% of lost neutrons because of escaping proton capture gamma
- ~0.05% of neutrons leave no signal in LSV at all

Larger total efficiency due to thermalization signal

Cut at 1 PE threshold: ~0.9% acceptance loss

DarkSide-50 results

150 kg of LAr in cryostat with a 50 kg two-phase TPC

```
With Atmospheric Argon
1422 kg-day
PSD > 1.5×10<sup>7</sup>
```


Cryogenic solid state detectors

- Need: an absorber, a refrigerator, a thermometer
- Readout both ionization and phonon signals
- High energy resolution
- Low thereshold
 - ~ 3 eV to create electron-hole pair against ~ 30 eV for scintillation photon
- Thermal and athermal sensors
 - Thermal needs thermalization of phonons within the bulk and sensor, ms timescale
 - Athermal measures non-equilibrium phonons
- Temperature change = E / C
 - 10 mK and 1 keV produces ΔT ~ 1 μK
- Phonon sensors: NTDs and TESs

Neutron Transmutation Doped (NTD) Ge Sensors

- Thermal sensors used as an example in CUORE
- Ge wafers are bombarded with neutrons to produce dopant impurities
- Dopant concentration determines the sensor performaces
- Strong dependence of resitance on temperature:

 $- R \sim T^{-g}$

SuperSDMS at SNOLab

interleaved Z-sensitive Ionization and Phonon (iZIP) detectors for ionization and athermal phonon signals

HV detectors

TES readout for athermal phonons

iZIP and HV detectors in SuperCDMS

Charge and phonons

phonons

High PSD efficiency

Low threshold

Phonon amplification of ionization signal

Neganov-Trofimov-Luke (NTL) effect: drifting electrons amplify phonon production

SuperCDMS

- Ge and Si target at 15 mK
- 30 kg in 24 detectors and 4 towers at SNOLab
- Each tower contains Ge (1.4kg) and Si (0.6kg) detectors
- Two towers with HV detectors to exploit NTL effect
 - $E_{NTL} = N_{eh} eV_b$ ($N_{eh} = E_r / \epsilon$ with $\epsilon^3 eV$)
 - $E_{tot} = E_r + E_{NTL}$
- Detectors equipped to read both phonons (TES) and charge
 - Robust PSD for ER
- e,γ background ~ 0.1 dru
- Discrimination of surface background from charge distribution
 - Bulk event have symmetric distribution between top and bottom
- Sensitivity to $m_{\chi} \simeq 0.3 \text{ GeV/c}^2$

PSD in SuperCDMS

- ER produces a lot of ionization, much more than NR
 - ER gives high fraction of ionization and small fraction of phonons
- Yield = Charge / Phonon energy
- Y_{NR} < Y_{ER}

PSD at work

Passing Charge Symmetry Selection

60

Side 1 Charge Collection [keVee]

80

100

1.2

Ionization Yield 9.0

0.2

0^L

00

80

40

20

n

20

40

SuperCDMS 2023-2026

Edelweiss at LSM

24 Ge crystals operated at 18 mK (860 g each) Phonons readout by two NTDs Strong PSD down to 5 keV Rejection power for ER events $4x10^{-5}$ WIMP search above 10 GeV/c² limited by n background

Superheated Liquids

- PICASSO, COUPP, PICO
- Sealed vessels with liquid under pressure
- Exploit bubble nucleation
 - Ionization produces gas bubbles
- Bubble grows if $P_b > P_l + P_s$
 - Bubble growth detected by acoustic sensors
- ER have much lower threshold than NR
- Alpha background can be discriminated by acoustic detector

 C_4F_{10}

ALP and dark photons with low threshold detectors

Electron emitted with the Incoming energy of DM particle

Probe eV scale mass

Deposited energy proportional to mass of incoming particle

Ze

Image credit to J. Cooley

DM direct detection experimental signatures

 Daily forward/backward asymmetry due to Earth's rotation

• Annual modulation

Direct Dark Matter search with Nal(Tl)

Annual Modulation of WIMP interaction rate

eclipt The WIMPs interaction rate is v_☉ ~ 220 km/s oscillating during one year due to the relative motion of the $v_{\chi}(t) = v_{sun} + v_{earth} \sin \delta \cos \left[\frac{2\pi}{T} (t - t_0) \right]$ Galactic plane $v_{\chi}(t) \sim 220 + 15 \cos\left[\frac{2\pi}{365}(t-153)\right]$ km/s Expected modulation (at % level) of rate $\mathbf{R}(\mathbf{E}_r, t) = \mathbf{R}_0(\mathbf{E}_r) + \mathbf{R}_1(\mathbf{E}_r) \cos\left[\frac{2\pi}{365}(t-153)\right]$ 2. spectral shape This is a **model independent** signature

DM annual modulation

100 GeV/c² gives a flux of ~10⁵ cm⁻²s⁻¹

$$S(\theta, t) = S_0(\theta) + S_m(\theta) \cos\left(\frac{2\pi}{T}(t - t_0)\right)$$

- $S_m \sim few \% S_0$
- for a Nal target experiment – $S_0 \sim 0.1 \text{ cpd/kg/keV}$ in [2,6] keV for $\sigma=10^{-42}\text{cm}^2$

Nal detectors and DM direct searches

• DAMA/LIBRA

- 250 kg running at LNGS since 2003
- Upgrade in 2010 (Phase 2) running since 2011
 - Replaced PMTs, new preamplifiers and trigger
- S_m = 0.0105±0.0011 cpd/kg/keV in [1,6]keV for 1.13 ton x yr (only Phase 2)
- ANAIS
 - 112.5 kg running at LSC since 2017
 - $-S_{m} = -0.0034 \pm 0.0042$ cpd/kg/keV in [1,6]keV for 313.95 kg x yr

• COSINE-100

- 106 kg running at Yangyang since 2016
- $-S_{m} = 0.0092 \pm 0.0067$ cpd/kg/keV in [2,6]keV for 97.7 kg x yr

DAMA/LIBRA

Phase 1 in [2,6] keV: ~1 cpd/kg/keV

Phase 2 in [1,6] keV: ~0.7 cpd/kg/keV

- 5x5 module matrix of Nal(TI) detectors produced by Saint-Gobain
- No muon veto
- 20 annual cycles for 2.46 ton x yr (including DAMA/Nal)
- Average ~20 ppb of K
- Average ²¹⁰Pb ~ 5-30 μBq/kg
- Average ${}^{3}H < 90 \mu Bq/kg$
- ²³²Th ~ 2-30 μBq/kg [0.5-7.5 ppt]
- ²³⁸U ~ 9-120 μBq/kg [0.7-10 ppt]

Setup ~250 shield Back < 1 co Expo 2.17 t Signa

154

DAMA/LIBRA phase1: WIMPs fit

Target	LY [pe/keV]	Threshold ER [pe/keV]	Threshold NR [keVr]	σ / Ε
Nal	5.5-7.5	2	6.7(Na) 22(I)	~7% at 60keV

 $---- M_{\chi} = 12 \text{ GeV/c}^2 \sigma_{\chi p} = 1.5 \cdot 10^{-41} \text{ cm}^2 \chi^2/\text{Ndof} = 1.02$ $---- M_{\chi} = 8.6 \text{ GeV/c}^2 \sigma_{\chi p} = 1.9 \cdot 10^{-41} \text{ cm}^2 \chi^2/\text{Ndof} = 1.69$

DAMA/LIBRA fit for "standard" SI WIMPs

A. Ianni, Canfranc Laboratory

- 3x3 module matrix of Nal(TI) detectors produced by Alpha Spectra Inc
- Muon veto
- Average ~32 ppb of K
- Average ²¹⁰Pb ~0.8 mBq/kg (2 older crystals have ~3 mBq/kg)
 - From PSA and direct counting
- Average ${}^{3}\text{H} \sim 0.15 \text{ mBq/kg}$
- 232 Th ~ 1.5 μ Bq/kg
- ²³⁸U ~ 6 μBq/kg

⁴⁰K and ²²Na rate time evolution

cpd/kg/keV

cpd/kg/keV

10⁻¹

ANAIS recent result

- Sensitivity given as $S_m^{DAMA}/\sigma(S_m^{ANAIS})$
- At present
 - $\sigma(S_m^{ANAIS}) = 0.0042 \text{ cpd/kg/keV}$ for [1,6] keV

- 4x2 module matrix of Nal(Tl) detectors produced by Alpha Spectra Inc
- Muon veto and 2ton active liquid scintillator veto
- Average ~25 ppb of K

ge ²¹⁰Pb ~1.3 mBq/kg rom PSA and direct counting ge ³H ~ 0.15 mBq/kg ~ 5 μBq/kg 1.5 μBq/kg

Low energy spectrum in one crystal from EPJ C 2021

³H background in ROI

²¹⁰Pb background in ROI

²¹⁰Pb can be a main source of background in the ROI.Contribution in ROI ~3%

In DAMA/LIBRA of order of 30 $\mu\text{Bq/kg}$

In best ANAIS-COSINE crystals of order x 30 DAMA/LIBRA

SABRE

- A new Nal based detector array with two set-ups one at LNGS and one at SUPL
- Aim to obtain 0.1 dru in ROI by dedicated ultra high purity underground
- Present status: PoP at LNGS and full scale detector under construction at SUPL

The SABRE PoP @ LNGS

PHASE I: SABRE Proof of Principle (PoP) – ongoing @LNGS

Goals

- Produce and characterize high purity NaI(TI) detector
- Test active veto performance

Energy spectrum analysis

- Data: single hits spectrum
- Background components from MC
- Fit p-value = 0.26

Breakdown of background components in SABRE PoP

Rate from counting data in [1,6] keV is 1.20±0.05 cpd/kg/keV

Average ~4 ppb of K Average ²¹⁰Pb ~0.4 mBq/kg Average ³H ~ 12 μ Bq/kg ²³²Th ~ 1.6 μ Bq/kg ²³⁸U ~ 6 μ Bq/kg

Source	Activity [mBq/kg]	Rate in ROI [cpd/kg/keV]
⁴⁰ K	0.14±0.01	0.018±0.001
²¹⁰ Pb (bulk)	0.41±0.02	0.28±0.01
²²⁶ Ra ²³² Th	0.0059±0.0006 0.0016±0.0003	0.0044±0.0005
³ Н	0.012±0.007	<0.12
^{121m} Te ^{127m} Te ¹²⁹ I	<0.084 0.016±0.006 1.34±0.04	<0.011
²¹⁰ Pb(reflector)	0.32±0.06	0.63±0.09
Other backgrounds		0.10±0.05
Total		1.16±0.10

SABRE PoP: Comparison with other NaI(Tl)-based experiments

Axions as DM particles

Electric dipole moment of neutron

- Dipole moment of H_2O - estimation~ $10^{-8} e \cdot cm$
 - estimation $\sim 10^{-6} e \cdot cm$
 - data ~ $5x10^{-9}$ e \cdot cm
- Dipole moment of neutron
 - estimation $10^{-13} e \cdot cm$
 - theory ~ $10^{-16} \theta e \cdot cm$
 - data $< 3x10^{-26} e \cdot cm$

• $\theta \sim 10^{-10}$?

- From theory: $d_n = 2.4 \times 10^{-16} \theta e \cdot cm$
 - With $\boldsymbol{\theta}$ parameter from the theory

- Data: $\theta \sim 10^{-10}$

- Peccei, Quinn 1977, Weinberg, Wilczek 1978: a new scalar field associated to $\theta,$ axion field
- Axion created at some high energy scale $f_a \sim 10^{16} \text{ GeV}$

$$-m_a \approx 10^{-9} eV \left(\frac{10^{16} GeV}{f_a}\right)$$

• $10^{-12} eV < m_a < 1 MeV$

Axion as DM particle

• Thermal axions would contribute to HDM:

$$\Omega_a h^2 \approx 0.5 \left(\frac{m_a}{130 \ eV}\right)$$

- $m_a < 0.7 \ eV$ for DM cannot be mainly hot

• Axion CDM:
$$\Omega_a h^2 \approx 0.13 \left(\frac{m_a}{10 \, \mu eV}\right)^{-7/6}$$

- This depends on how θ changes with T while relaxing to 0
- With ρ_{DM} ~ 0.4 GeV/cm³ and $m_{\text{a}}\text{=}$ 10 μeV
- $\lambda_{de Broglie} \sim 12 \text{ cm}$
- $n_a \sim 4x10^{13} \text{ cm}^{-3}$
- $\phi \sim 10^{21} \text{ cm}^{-2} \text{ s}^{-1}$

From QCD axions to ALPs

- QCD axions: m_a f_a ~ m_πf_π with f_π ~ 93 MeV (pion decay constant)
- m_a f_a can be larger or smaller for ALPs and the space of parameters gets much larger
- These are «possible» weak interacting particles with features similar to the QCD axions

Axion-photon conversion

 $P_{a \rightarrow \gamma} \propto g_{a \gamma \gamma}^2 B^2 L^2$

Axioelectric effect

• This effect can be studied as a by-product in WIMPs DM detectors with low threshold

 $g_{ae} < 10^{-12}$ for 1-40 keV

$$m m_a \propto g_{a\gamma\gamma} \propto 1/f_a$$

 $\Omega_a \propto f_a^{7/6}$

Looking for axion decay in space

• Idea: $a \rightarrow 2\gamma$ with $E_{\gamma} = m_a / 2$ from any halo including our own

 Coupling very very small implies decay time >> universe age

Solar axions

Axions are produced in the keV plasma inside the Sun Primakoff effect:

$$\gamma + Ze \rightarrow Ze + a$$

Detector

Source

These axions can be detected on Earth by axion-photon conversion

CAST Conversion produces X-ray which need to be detected sun Image: Sun subscript subscrit subscript subscript subscript subscript

$$p_{a}c = \sqrt{E_{a}^{2} - m_{a}^{2}c^{4}} \approx E_{a} \left(1 - \frac{m_{a}^{2}c^{4}}{2E_{a}^{2}}\right)$$

$$q = \left| p_{\gamma} - p_a \right| = \left| \frac{m_{\gamma}^2 - m_a^2}{2E_a} \right| \quad E_{\gamma} \approx E_a$$

FE B

CAST

• Solar axion:

$$-\phi_a \sim 4 \times 10^{11} \left(\frac{g_{a\gamma}}{10^{-10} \, GeV^{-1}}\right) \, cm^{-2} s^{-1} \\ -\langle E_a \rangle = 4.2 \, keV$$

- Energy losses limits $g_{a\gamma} < 5 \times 10^{-10} \ GeV^{-1}$
- Transition probability

$$-P_{a \to \gamma} = \left(\frac{g_{a\gamma} B L}{2}\right)^2 \sin\left(\frac{qL}{2}\right)^2 / \left(\frac{qL}{2}\right)^2$$

CAST with magnet under vacuum

Transition probability > 0 if qL/2 < π

In vacuum $m_{\gamma} = 0$ and

$$m_a < \sqrt{\frac{4\pi E_a}{L}} \sim 0.03 \text{ eV}$$
 with L = 10 m

How one can probe larger masses?
Filling the magnet with gas in CAST

- Use ⁴He
- Photons have an effective mass

$$-m_{\gamma}^{2} = 4\pi \frac{N_{e}}{V} r_{e}$$

$$-\frac{N_{e}}{V} = \frac{2N_{A}}{R} \frac{p}{T}$$

$$-m_{\gamma} = \sqrt{0.01997 \left(\frac{p}{mbar}\right) \left(\frac{K}{T}\right)} \approx 0.25 \ eV \text{ for } p = 5.5 \text{ mbar and } T = 1.8 \text{ K}$$

• Sensitivity to axion for $m_a \sim m_\gamma$ so that $q \sim 0$

•
$$q = \left|\frac{m_{\gamma}^2 - m_a^2}{2E_a}\right| < \frac{2\pi}{L}$$
 depends on pressure and on E_a, m_a fixing T = 1.8 K and L ~ 10 m

•
$$\sqrt{m_{\gamma}^2 - \frac{4\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{4\pi E_a}{L}}$$

- with $p_{max} \sim 16$ mbar, $m_a < 0.43$ eV
- with ³He goes up to 1.2 eV

- 9.26 m prototype LHC magnet with $B_{max} = 9 T$
- System to perform alignement to the Sun during sunrise and sunset
 2 weeks in Spring and Fall
- X-ray detector

$$N_{\gamma} = \int_{E} \frac{d\Phi(E_a)}{dE_a} P_{a \to \gamma}(E_a) \ \epsilon(E_a) \ \Delta t \ A \ dE_a$$

 $A = 14.522 \text{ cm}^2 \text{ magnet bore}$

IAXO

- Next generation helioscope
- L = 25 m
- 2.5 T in 8 bores
- Use MM X-ray detectors with ~ 10⁻⁷ cts/keV/cm²/s background level
- Expected to improve CAST S-to-N of 10⁴

Axion haloscope

- Proposed by P. Sikivie in 1983
- Tunable high-Q microwave cavity
- Axion couples with cavity producing a photon with f = E/h
- 10 µeV => 2.4 GHz
- E.m. power is extracted by an antenna

$$P \approx 10^{-22} W \left(\frac{V}{10 L}\right) \left(\frac{B}{6 T}\right)^2 \left(\frac{m_a}{10 \mu eV}\right)$$

ADMX:

B = 7.6 T V = 140 L --> 136 with tuning rods P ~ 10⁻²¹ W for 10 μeV

ADMX

$$P \propto g_{a\gamma\gamma}^2 \left(\frac{\rho_a}{m_a}\right) B^2 Q$$

$$P = 7.7 \times 10^{-23} W \left(\frac{V}{136 L}\right) \left(\frac{B}{7.5 T}\right)^2 \left(\frac{C}{0.4}\right) \left(\frac{\rho_a}{0.45 \ GeV/cm^3}\right) \left(\frac{g_\gamma}{0.36}\right)^2 \times \left(\frac{f_a}{1 \ GHz}\right) \left(\frac{Q}{8 \times 10^4}\right)$$

•
$$Q = \frac{f}{\Delta f}$$

- $E_a \sim m_a (1 + O(\beta^2))$ with $\beta \sim 10^{-3}$
- Δf_a / f_a ~ 10^{-6} ~ and Δf_c / f_c ~ 10^{-4}
- Signal-to-Noise Ratio = $\frac{P}{k T s / \epsilon} \sqrt{\frac{\Delta t}{\Delta f}}$
 - E transmission efficiency between the cavity and the Josephson parametric amplifier (JPA)
 - $kT_{s} = h\nu \left(\frac{1}{e^{h\nu/kT}} + \frac{1}{2}\right) + kT_{A}$
- Scanning f over a wide range

Light shining through wall

ABRACADABRA

 Axion flux induces a current in a magnet

 $-I \propto$

 $g_{a\gamma\gamma} B_0 \sqrt{\rho_a} \cos(m_a t)$

- This currect induces a notstatic magnetic field which can be detected
- Aiming to probe $m_a < 10 \mu eV$
- Prototype stage

The end. Thank you