La complessità nelle reti ecologiche

UNIVERSITÀ degli Studi di Padova

auto-organizzazione e ottimalità

XX edizione della Giornata Fermiana @SamirSuweis, 8.02.2022

Auto-organizzazione e Interazione tra le specie

Come studiare "da Fisico" questi sistemi?

Piccolo pit-stop a Las Vegas

Gioco dei dati. Si lanciano due dadi. Si fa la somma tra i due numeri usciti. Vince chi ha puntato sulla somma esatta.

Su quale numero punti i tuoi 100\$?

www.wooclap.com/XJPEBX

L'approccio del fisico

"Make everything as simple as possible, but not simpler."

"You don't really understand something unless you can explain it to your grandmother."

A. Einstein

Come studiare sistemi a molti corpi?

10^23 molecole

F=m a

Moto dei corpi: I- è facile 2 - è (diventato) facile 3 - è impossibile

Come studiare sistemi a molti corpi?

N atomi di massa m, moto casuale

Atomi molto Iontani tra Ioro (no interazione)

Collisioni elastiche (conservazione E)

Come legare il micro al macro: la fisica statistica

Il legame è probabilistico

Considera N dadi, ogni dato può risultare in un numero tra I e 6. Lo spazio delle configurazioni è lo spazio di tutte le possibili combinazioni. Il macro stato è la somma di tutti gli N dati.

 Per esempio considerando 3 Dati
 Stati microscopici

 11
 12
 21
 13
 31
 22
 122
 21
 666

 3
 4
 5
 18

 STATI MACROSCOPICI

Stato macroscopico più probabile?

STATI MICROSCOPICI

II I22I I55I 244233 I66I 34432552...66

7 = stato macroscopico più probabile!

Immaginate 1000, 10000, 100000 dadi...tantissimi stati macroscopici sono completamente irrilevanti! Solamente per il "disordine"!

Come studiare sistemi complessi?

Modelli di particelle ir

PV = nRT

Proprietà Emergenti

materiali magnetici

rete neurale

Cosa hanno in comune?

rete fiori-impollinatori

ecosistemi (foreste)

Thanks to Matteo Adorisio

Caratteristica di un **sistema complesso:** "many entities + interactions"

emergenza di **proprietà macroscopiche** non legate direttamente agli enti "microscopici"

Come investigarle ?

Thanks to Matteo Adorisio

Patterns Emergenti in Ecologia Abbondanza Relativa delle Species (RSA)

Il voter Model in Ecologia

- Comunità di N individui and S specie (colori)
- Prendiamo a caso un individuo e lo facciamo "morire".
- 1-m: lo rimpiazziamo con un altro individuo nel sistema a caso
- m: lo rimpiazziamo con un individuo di una nuova specie

$$\frac{dP_n(t)}{dt} = b_{n-1}P_{n-1}(t) + d_{n+1}P_{n+1}(t) - (b_n + d_n)P_n(t)$$

Parametri: b_n/d_n e $m = b_0$

Risultati

Azaele et al., Review of Modern Physics 2016

Volkov et al., Nature 2007

Tempi di persistenza delle specie

Bertuzzo et al., PNAS 2011 Suweis et al., JTB 2012

Possiamo predire l'esistenza di nuovi patterns?

Un nuovo pattern emergente!

Dalle foreste ai batteri

ARTICLE

OPEN doi:10.1038/nature24621

 A communal catalogue reveals Earth's multiscale microbial diversity

Il microbio ma umano

www.youtube.com/watch?v=rmL_XTrPOMw

Reti ecologiche

S=A+P specie C=densità di connessioni

Cosa è una rete (network)?

GRAFO BIPARTITO

Matrice (tabella) di adiacenza: A Se "pesata" M matrice di interazione

Ancora patterns emergenti!

Ancora patterns emergenti!

Un' occhiata da più vicino

Annidamento —> NODF

Misurare l'annegamento

Overlap

 $o_{ij}^P \equiv \sum_k a_{ik}^{PA} a_{jk}^{PA}$

Numero di patterns in comune che la i-esina e la j-esima pianta (o pollinatore) condividono

NODF Almeida et al., Oikos 2008

Dati vs Casualità

Modello "nullo": teniamo fissi S e C, e disponiamo le connessioni in modo casuale

Perchè questa proprietà emergente?

Che vantaggio hanno le specie ad auto-organizzarsi in quel modo?

Qualche strategia di adattamento o ricerca di cibo?

LETTER

doi:10.1038/nature12438

Emergence of structural and dynamical properties of ecological mutualistic networks

Samir Suweis¹, Filippo Simini^{2,3}, Jayanth R. Banavar⁴ & Amos Maritan¹

La mia strategia

Principio di ottimizzazione

- Variabile che indica le popolazioni delle specie $x = \{x_1, x_2, ..., x_S\}$
- Matrice di interazione M scelta a caso
- Modello dinamico per l'evoluzione della popolazione data M

$$\frac{dx_i}{dt} = x_i \left(\alpha_i - \sum_j^S M_{ij} x_j \right) \equiv f_i(\vec{x})$$

Implementazione del principio di Ottimizzazione

Iniziamo con popolazioni a caso e M a caso

Strategia: se mangio meglio $M \Rightarrow M'$ cambio fiore!if $x_i^{',*} > x_i^*$

Simulazione del modello: Emergenza di annidamento

Suweis et al., Nature 2013

Perchè studiare questi sistemi?

Servizi ecosistemici

- Circa 1/3 of del cibo è prodotto grazie all'azione degli impollinatori.
 - Ci sono più di 20,000 differenti specie di api
- Circa il 75% dei campi coltivati (tra cui caffè, molti frutti, mandorle e cioccolato) dipende dall'impollinazione
- I servizi annui prodotti dall'impollinazione sono valutati 10 miliardi\$

Declino di biodiversità e cascata di estinzioni

Review

Global pollinator declines: trends, impacts and drivers

Simon G. Potts¹, Jacobus C. Biesmeijer², Claire Kremen³, Peter Neumann⁴, Oliver Schweiger⁵ and William E. Kunin²

Domínguez-García, V., & Munoz, M. A. (2015). Scientific reports, 5, 8182.

Come I lupi hanno cambiato i fiumi

GRAZIE A VOI PER L'ATTENZIONE E A TUTTI I MIEI COLLABORATORI!

