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Auto-organizzazione e Interazione tra le specie



  

Criticality has been found 
in many biological systems!

Biological systems may
bene>t from criticality??

Come studiare “da Fisico” questi sistemi?



Piccolo pit-stop a Las Vegas

Gioco dei dati. Si lanciano due dadi. Si fa la somma tra i due numeri 
usciti. Vince chi ha puntato sulla somma esatta. 

Su quale numero punti i  tuoi 100$?        
www.wooclap.com/XJPEBX

https://www.wooclap.com/XJPEBX


L’approccio del fisico

A. Einstein

“Make everything as simple as possible, 
but not simpler.”

“You don’t really understand something unless 
you can explain it to your grandmother.”



F=m a
Moto dei corpi:

1- è facile
2 - è (diventato) facile
3 - è impossibile

Come studiare sistemi a molti corpi? 

10^23 molecole



N atomi di massa m, moto casuale

Atomi molto lontani tra loro         
(no interazione)

Collisioni elastiche (conservazione E)

Come studiare sistemi a molti corpi? 



Come legare il micro al macro: 
 la fisica statistica

Il legame è probabilistico

Considera N dadi, ogni dato può risultare in un 
numero tra 1 e 6. Lo spazio delle configurazioni 
è lo spazio di tutte le possibili combinazioni. Il 
macro stato è la somma di tutti gli N dati.                                                        

11I   121 211 112    113 311 131 221 122 212  ….       666 
Stati microscopiciPer esempio considerando 3 Dati

STATI MACROSCOPICI

3            4                        5  ….      18



Stato macroscopico più 
probabile?

11   12 21  …. 15 51 24 42 33    16 61 34 43 25 52 … 66

STATI MICROSCOPICI

7 = stato macroscopico più probabile!

Immaginate 1000, 10000, 100000 dadi…tantissimi stati macroscopici 
sono completamente irrilevanti! Solamente per il “disordine”!



Come studiare sistemi complessi? 

P V = n R T Modelli di particelle interagenti 

Emerging Pattern in Ecosystems

The importance of Space: SAR
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Ferromagnetismo 

Proprietà Emergenti 



  

Cosa hanno in 

comune ?

materiali magnetici

rete fiori-impollinatori

ecosistemi (foreste)

economia
rete neurale

Thanks to Matteo Adorisio



  

Caratteristica di un sistema complesso:

“many entities + interactions”

emergenza di proprietà macroscopiche non 

legate direttamente agli enti “microscopici”

X
6=

Come investigarle ?

Thanks to Matteo Adorisio



Patterns Emergenti in Ecologia 
Abbondanza Relativa delle Species (RSA)
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Il voter Model in Ecologia

• Comunità di N individui and S 
specie (colori)

•  Prendiamo a caso un individuo e 
lo facciamo “morire”.

• 1-m: lo rimpiazziamo con un altro 
individuo nel sistema a caso 

• m: lo rimpiazziamo con un 
individuo di una nuova specie

dPn(t)

dt
= bn�1Pn�1(t) + dn+1Pn+1(t)� (bn + dn)Pn(t)

Parametri: bn/dn e m = b0

1-m

m
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Azaele et al., Review of Modern Physics 2016
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p⌧ (t) =
dP (0, t)

dt
p⌧ (t) = Ct�↵e�⌫t

Possiamo predire l’esistenza 
di nuovi patterns?

Suweis et al.,JTB 2012
Bertuzzo et al., PNAS 2011
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Un nuovo pattern emergente! 



Dalle foreste ai batteri
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ARTICLE
doi:10.1038/nature24621

A communal catalogue reveals Earth’s 
multiscale microbial diversity
Luke R. Thompson1,2,3, Jon G. Sanders1, Daniel McDonald1, Amnon Amir1, Joshua Ladau4, Kenneth J. Locey5, Robert J. Prill6, 
Anupriya Tripathi1,7,8, Sean M. Gibbons9,10, Gail Ackermann1, Jose A. Navas-Molina1,11, Stefan Janssen1, Evguenia Kopylova1, 
Yoshiki Vázquez-Baeza1,11, Antonio González1, James T. Morton1,11, Siavash Mirarab12, Zhenjiang Zech Xu1, Lingjing Jiang1,13, 
Mohamed F. Haroon14, Jad Kanbar1, Qiyun Zhu1, Se Jin Song1, Tomasz Kosciolek1, Nicholas A. Bokulich15, Joshua Lefler1, 
Colin J. Brislawn16, Gregory Humphrey1, Sarah M. Owens17, Jarrad Hampton-Marcell17,18, Donna Berg-Lyons19, 
Valerie McKenzie20, Noah Fierer20,21, Jed A. Fuhrman22, Aaron Clauset19,23, Rick L. Stevens24,25, Ashley Shade26,27,28, 
Katherine S. Pollard4, Kelly D. Goodwin3, Janet K. Jansson16, Jack A. Gilbert17,29, Rob Knight1,11,30 & The Earth Microbiome 
Project Consortium*

A primary aim of microbial ecology is to determine patterns and 
 drivers of community distribution, interaction, and assembly amidst 
complexity and uncertainty. Microbial community composition has 
been shown to change across gradients of environment, geographic 
distance,  salinity, temperature, oxygen, nutrients, pH, day length, 
and biotic factors1–6. These patterns have been identified mostly by 
 focusing on one sample type and region at a time, with insights extra-
polated across environments and geography to produce generalized 
 principles. To assess how microbes are distributed across environments 
 globally—or whether microbial community dynamics follow funda-
mental ecological ‘laws’ at a planetary scale—requires either a massive 
monolithic cross-environment survey or a practical methodology for 
coordinating many independent surveys. New studies of microbial 
environments are rapidly accumulating; however, our ability to extract 
meaningful information from across datasets is outstripped by the rate 
of data  generation. Previous meta-analyses have suggested robust gen-
eral trends in community composition, including the importance of 
 salinity1 and animal association2. These findings, although derived 
from relatively small and uncontrolled sample sets, support the util-

ity of meta-analysis to reveal basic patterns of microbial diversity and 
suggest that a scalable and accessible analytical framework is needed.

The Earth Microbiome Project (EMP, http://www.earthmicrobiome.
org) was founded in 2010 to sample the Earth’s microbial communities 
at an unprecedented scale in order to advance our understanding of the 
organizing biogeographic principles that govern microbial commu-
nity structure7,8. We recognized that open and collaborative  science, 
including scientific crowdsourcing and standardized methods8, would 
help to reduce technical variation among individual studies, which 
can overwhelm biological variation and make general trends difficult 
to detect9. Comprising around 100 studies, over half of which have 
yielded peer-reviewed publications (Supplementary Table 1), the EMP 
has now dwarfed by 100-fold the sampling and sequencing depth of 
 earlier meta-analysis efforts1,2; concurrently, powerful analysis tools 
have been developed, opening a new and larger window into the distri-
bution of microbial diversity on Earth. In establishing a scalable frame-
work to catalogue microbiota globally, we provide both a resource for 
the exploration of myriad questions and a starting point for the guided 
acquisition of new data to answer them. As an example of using this 

Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited 
understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols 
and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences 
about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds 
of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use 
of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene 
sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. 
The result is both a reference database giving global context to DNA sequence data and a framework for incorporating 
data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.

1Department of Pediatrics, University of California San Diego, La Jolla, California, USA. 2Department of Biological Sciences and Northern Gulf Institute, University of Southern Mississippi, 
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of Technology, Cambridge, Massachusetts, USA. 10The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. 11Department of Computer Science and Engineering, University 
of California San Diego, La Jolla, California, USA. 12Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA. 13Department of Family 
Medicine and Public Health, University of California San Diego, La Jolla, California, USA. 14Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 
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tool, we present a meta-analysis of the EMP archive, tracking individual 
sequences across diverse samples and studies with standardized envi-
ronmental descriptors, investigating large-scale ecological patterns, 
and exploring key hypotheses in ecological theory to serve as seeds 
for future research.

A standardized and scalable approach
The EMP solicited the global scientific community for environmen-
tal samples and associated metadata spanning diverse environments 
and capturing spatial, temporal, and/or physicochemical covariation. 
The first 27,751 samples from 97 independent studies (Supplementary 
Table 1) represent diverse environment types (Fig. 1a), geographies 
(Fig. 1b), and chemistries (Extended Data Fig. 1). The EMP encom-
passes studies of bacterial, archaeal, and eukaryotic microbial  diversity. 
The analysis here focuses exclusively on the bacterial and archaeal 
components of the overall database (for concision, use of ‘microbial’ 
will hereafter refer to bacteria and archaea only). Associated meta-
data included environment type, location information, host taxonomy  
(if relevant), and physico chemical measurements (Supplementary  
Table 2). Physicochemical measurements were made in situ at the time 
of sampling. Investigators were encouraged to measure temperature 
and pH at minimum. Salinity, oxygen, and inorganic nutrients were 
measured when possible, and investigators collected additional meta-
data pertinent to their particular investigations.

Metadata were required to conform to the Genomic Standards 
Consortium’s MIxS and Environment Ontology (ENVO) standards10,11. 
We also used a light-weight application ontology built on top of ENVO: 
the EMP Ontology (EMPO) of microbial environments. EMPO was 
 tailored to capture two major environmental axes along which micro-
bial beta-diversity has been shown to orient: host association and 
 salinity1,2. We indexed the classes in this application ontology (Fig. 1a) 
as levels of a structured categorical variable to classify EMP samples as 
host-associated or free-living (level 1). Samples were categorized within 
those classes as animal-associated versus plant-associated or saline 
 versus non-saline, respectively (level 2). A finer level (level 3) was then 
assigned that satisfied the degree of environment granularity sought 
for this meta-analysis (for example, sediment (saline), plant rhizos-
phere, or animal distal gut). We expect EMPO to evolve as new studies 

and sample types are added to the EMP and as additional  patterns of 
beta-diversity are revealed.

We surveyed bacterial and archaeal diversity using amplicon 
sequencing of the 16S rRNA gene, a common taxonomic marker for 
bacteria and archaea12 that remains a valuable tool for microbial  ecology 
despite the introduction of whole-genome methods (for  example, 
shotgun metagenomics) that capture gene-level functional diversity13. 
DNA was extracted from samples using the MO BIO PowerSoil DNA 
extraction kit, PCR-amplified, and sequenced on the Illumina platform. 
Standardized DNA extraction was chosen to minimize the potential 
bias introduced by different extraction  methodologies; however, extrac-
tion efficiency may also be subject to interactions between sample 
type and cell type, and thus extraction effects should be considered 
as a  possible confounding factor in interpreting results. We amplified 
the 16S rRNA gene (V4 region) using primers14 shown to recover 
sequences from most bacterial taxa and many archaea15. We note that 
these primers may miss newly discovered phyla with alternative riboso-
mal gene structures16, and subsequent modifications not used here have 
shown improved efficiency with certain clades of Alphaproteobacteria 
and Archaea17–19. We  generated sequence reads of 90–151 base pairs 
(bp) (Extended Data Fig. 2a, Supplementary Table 1), totaling 2.2 
 billion sequences, an average of 80,000 sequences per sample.

Sequence analysis and taxonomic profiling were done initially using 
the common approach of assigning sequences to operational taxonomic 
units (OTUs) clustered by sequence similarity to existing rRNA data-
bases14,20. While this approach was useful for certain analyses, for many 
sample types, especially plant-associated and free-living communities, 
one-third of reads or more could not be mapped to existing rRNA 
databases (Extended Data Fig. 2b). We therefore used a reference-free 
method, Deblur21, to remove suspected error sequences and provide 
single-nucleotide resolution ‘sub-OTUs’, also known as ‘amplicon 
sequence variants’22, here called ‘tag sequences’ or simply ‘sequences’. 
Because Deblur tag sequences for a given meta-analysis must be the 
same length in each sample, and some of the EMP studies have read 
lengths of 90 bp, we trimmed all sequences to 90 bp for this meta- 
analysis. We verified that the patterns presented here were not adversely 
affected by trimming the sequences (Extended Data Fig. 3). As we show, 
90-bp sequences were sufficiently long to reveal detailed patterns of 
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Figure 1 | Environment type and provenance of samples. a, The EMP 
ontology (EMPO) classifies microbial environments (level 3) as free-living 
or host-associated (level 1) and saline or non-saline (if free-living) or 
animal or plant (if host-associated) (level 2). The number out of 23,828 
samples in the QC-filtered subset in each environment is provided. EMPO 

is described with examples at http://www.earthmicrobiome.org/protocols-
and-standards/empo. b, Global scope of sample provenance: samples come 
from 7 continents, 43 countries, 21 biomes (ENVO), 92 environmental 
features (ENVO), and 17 environments (EMPO).
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Il microbioma umano



Species Interactions

www.youtube.com/watch?v=rmL_XTrPOMw



10/14/2014 Web of Life: ecological networks database

http://www.web-of-life.es/map.php 1/1
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S=A+P specie 
C=densità di 
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Cosa è una rete (network)?

GRAFO BIPARTITO
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Ancora patterns emergenti!
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Figure S1: Best fit (red solid line) of the connectivity as a function of the number of
species for 56 mutualistic communities. Dashed gray lines represent the region within
the ±1 standard deviation confidence interval for the exponent estimate. The plot is in
log-log scale.
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Ancora patterns emergenti!



Un’ occhiata da più vicino

Plant 
Pollinator web 
in Chile 
Arroyo, et al.

Random 
same S,C

Random 
same S,C

Avian fruit 
web  
in Puerto Rico 
Carlo, et al.
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Numero di patterns in comune che la i-esina e  
la j-esima pianta (o pollinatore) condividono

NODF
Almeida et al., Oikos 2008

Misurare l’annegamento

Overlap



Dati vs Casualità
Modello “nullo”: teniamo fissi S e C,  

e disponiamo le connessioni in modo casuale 
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Perchè questa proprietà emergente?

Che vantaggio hanno le specie ad 
auto-organizzarsi in quel modo?

Qualche strategia di adattamento 
o ricerca di cibo?

LETTER
doi:10.1038/nature12438

Emergence of structural and dynamical properties of
ecological mutualistic networks
Samir Suweis1, Filippo Simini2,3, Jayanth R. Banavar4 & Amos Maritan1

Mutualistic networks are formed when the interactions between
two classes of species are mutually beneficial. They are important
examples of cooperation shaped by evolution. Mutualism between
animals and plants has a key role in the organization of ecological
communities1–3. Such networks in ecology have generally evolved
a nested architecture4,5 independent of species composition and
latitude6,7; specialist species, with only few mutualistic links, tend
to interact with a proper subset of the many mutualistic partners of
any of the generalist species1. Despite sustained efforts5,8–10 to explain
observed network structure on the basis of community-level stabi-
lity or persistence, such correlative studies have reached minimal
consensus11–13. Here we show that nested interaction networks could
emerge as a consequence of an optimization principle aimed at maxi-
mizing the species abundance in mutualistic communities. Using
analytical and numerical approaches, we show that because of the
mutualistic interactions, an increase in abundance of a given species
results in a corresponding increase in the total number of individuals
in the community, and also an increase in the nestedness of the
interaction matrix. Indeed, the species abundances and the nested-
ness of the interaction matrix are correlated by a factor that depends
on the strength of the mutualistic interactions. Nestedness and the
observed spontaneous emergence of generalist and specialist species
occur for several dynamical implementations of the variational prin-
ciple under stationary conditions. Optimized networks, although
remaining stable, tend to be less resilient than their counterparts
with randomly assigned interactions. In particular, we show analyti-
cally that the abundance of the rarest species is linked directly to the
resilience of the community. Our work provides a unifying frame-
work for studying the emergent structural and dynamical properties
of ecological mutualistic networks2,5,10,14.

Statistical analyses of empirical mutualistic networks indicate that a
hierarchical nested structure is prevalent and is characterized by nested-
ness values that are consistently higher than those found in randomly
assembled networks with the same number of species and interactions1,6.
Nevertheless, the degree of nestedness varies among networks. Recently5,10,
it has been argued that nestedness increases biodiversity and begets
stability, but these results are in conflict with robust theoretical evi-
dences showing that ecological communities with nested interactions
are inherently less stable than unstructured ones12,14,15 and that mutua-
lism could be detrimental to persistence11,15. We aim to elucidate gene-
ral optimization mechanisms underlying network structure and its
influence on community dynamics and stability.

There is a venerable history of the use of variational principles for
understanding nature, which has led to major advances in many sub-
fields of physics, including classical mechanics, electromagnetism,
relativity, and quantum mechanics. Our goal is to determine the appro-
priate variational principle that characterizes a mutualistic community
in the absence of detailed knowledge of the nature and strengths of the
interactions between species and their environment. We begin by showing
that increases in the abundances of the species lead to an increase in the

total number of individuals (henceforth referred to as the total popu-
lation) within the mutualistic community. We then show that, under
stationary conditions, the total population is directly correlated with
nestedness and vice versa. Finally, we demonstrate that nested mutua-
listic communities are less resilient than communities in which species
interact randomly. These results suggest a simple and general optim-
ization principle: key aspects of mutualistic network structure and its
dynamical properties could emerge as a consequence of the maximiza-
tion of the species abundance in the mutualistic community (see Fig. 1).

We consider a community comprising a total of S interacting species
(see Methods), in which population dynamics is driven by interspecific
interactions. We model mutualistic and competitive species interactions
using both the classical Holling type I and II functional responses16–18

(Supplementary Information). We perform a controlled numerical experi-
ment at the stable stationary state by holding fixed the number of spe-
cies, the strengths of the interactions, and the connectance (the fraction
of non-zero interactions), and seek to maximize individual species
population abundances by varying the network architecture. The sim-
plest approach consists of repeatedly rewiring the interactions of a
randomly drawn species so as to increase its abundance, that is, each
selected species attempts to change its mutualistic partners in order to
enhance the benefit obtained from its interactions (see Methods and
Supplementary Information). The optimization principle may then be
interpreted within an adaptive evolutionary framework within which
species maximize the efficiency of resource usage19,20 and minimize
their chances of becoming extinct owing to stochastic perturbations21,22.
Interestingly, we find that enhancements in the abundance of any given
species most often results in growth of the total population along with a
concomitant increase of the nestedness (see Fig. 1). These results dem-
onstrate the existence of a correlation between nestedness and species
abundance and highlight a non-trivial collective effect through which
each successful switch affects the abundances of all species, leading to
an inexorable increase, on average, of the total number of individuals in
the community.

In order to make analytical progress and to better understand the
correlation found between the optimization of individual species abun-
dances, the total number of individuals in the community and nested-
ness, we turn to a mean field approximation5 in which the mutualistic
(and competitive) interactions are assumed to have the same magnitude.
Within this approximation, we are able to prove that (see Supplemen-
tary Information for mathematical details): (1) an increase in the abun-
dance of any species more often than not leads to a net increase in the
total population of the community; and (2) communities with larger
total population have interaction matrices with higher nestedness and
vice versa. The intraspecific (plant–plant and animal–animal) interac-
tions have a key but secondary role compared to the mutualistic (plant–
animal) interactions. The main effect of the intraspecific interactions is
to break the degeneracy in the network overlap (Supplementary Infor-
mation). Extensive numerical simulations in the more general, non-mean
field case of heterogeneous interactions also confirm these findings. The

1Dipartimento di Fisica e Astronomia ‘G. Galilei’ & CNISM, INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy. 2Center for Complex Network Research and Department of Physics, Biology and
Computer Science, Northeastern University, Boston, Massachusetts 02115, USA. 3Institute of Physics, Budapest University of Technology and Economics Budafoki ut 8, Budapest H-1111, Hungary.
4Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
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La mia strategia

Stessa idea!



Principio di ottimizzazione
• Variabile che indica le popolazioni delle specie x = {x1,x2,…,xS}

• Matrice di interazione M scelta a caso 

• Modello dinamico per l’evoluzione della popolazione data M
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Simulazione del modello: Emergenza di annidamento
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Perchè studiare questi sistemi?
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slightly worse results than the original one; however, even in this
form MusRank outperforms all other rankings.

Algorithm testing and comparison with other rankings. We com-
pared different rankings based on (see Methods) : a) decreasing
closeness centrality (CLOS), b) decreasing eigenvector centrality
(EIG), c) decreasing betweenness centrality (BTW), d) decreasing
degree centrality (DEG), e) increasing contribution to nestedness
(NES) as described in ref. 16, f) decreasing PageRank (PAGE), and
g) decreasing importance as measured by MusRank (MUS).

The average extinction area of the different algorithms was
obtained for all networks in the dataset. In the frequent case in which
the order is degenerate (more than one node were rated with the
same value), we considered 103 different randomizations and com-
puted the averaged extinction area.

For the sake of completeness we have also repeated all the protocol
above, but exchanging in Eq.(1) the roles of active and passive spe-
cies, i.e. assigning importances to passive species and vulnerabilities
to active ones. We refer to this as ‘‘reversed’’ algorithm. We have also
studied extinction areas by progressively removing passive species
(rather than active ones) and monitoring secondary extinctions of
active species.

Computational results. Figure 3 illustrates the performance of
the different rankings/algorithms for three different instances of
mutualistic networks. Extinction areas are plotted for each of the
considered ranking algorithms. In the three cases MusRank gives
results closest to the corresponding optimal solutions as derived
from the genetic algorithm. In almost all of the 63 studied cases,
results are much better for the novel ranking than for any of the
other ones (see Figure 3). PageRank gives similar results to Mus-
Rank in a few cases (including a relative large network with 102
nodes). Apart from this, only for very small networks (with less
than 17 active species) some other method different from PageRank
gives extinction areas similar to the ones of the novel algorithm. In

about one third of the networks, the ranking provided by MusRank is
as good as the one found by the GA and in some cases (networks for
which the GA could not converge in a reasonable time) extinctions
areas are larger for MusRank than for the GA.

Figure 4 gives a global picture of the performance of the different
rankings. It shows the difference, averaged over 60 mutualistic net-
works, between the optimal solution as found by the GA and that of
each specific ranking (the 3 networks for which the GA does not
converge are excluded from this analysis). Figure 4A illustrates that
the ranking provided by the MusRank –either in the direct or the
reversed form– greatly outperforms all others.

The same conclusion can be reached when progressively removing
passive rather than active species, ordered in a sequence of increasing
vulnerability (rather than decreasing importance), see Figure 4B.
Therefore, both targeting strategies and both the direct and the
reversed versions of the algorithm provide results of similar quality.

Optimally packed matrices. The ranking provided by MusRank, in
which nodes are arranged by their level of importance or vulnerability,
permits us to obtain a highly packed matrix as illustrated in Figure 5.
By ‘‘packed’’ we mean that a neat curve separates densely occupied
and empty parts of the matrix. It could be thought that this ordering
might be somewhat similar to the one that allegedly packs the matrix
in the most efficient way (as defined by existing algorithms usually
employed in the literature to measure nestedness17). However, as
Figure 5 vividly illustrates, the ordering provided by MusRank gives
a more packed matrix than that obtained by the standard method
employed by nestedness calculators17. This suggests that MusRank
should be used (rather than existing ones) to measure nestedness in
bipartite matrices.

Discussion
In this paper we have presented a novel framework to asses the
relative importance of species in mutualistic networks. Inspired by
a recent work on economics/econometrics we employ an algorithm,

Figure 2 | Left: schematic representation of the extinction protocol for an empirical mutualistic network (Arctic community21) with 18 active
(pollinators) and 11 passive (plants) species). Both active (left) and passive (right) species are ordered following some prescribed ranking; from the
highest ranked species (top) to the lower-ranked ones (bottom). The (blue and red) lines represent mutualistic interactions as encoded in the interaction
(or adjacency) matrix. Active species are progressively removed from the community, their corresponding (red) links are erased, and passive species are
declared extinct whenever they lose all their connections. Right: extinction curve, showing the fraction of extinct passive species as a function of the
number of sequentially removed active ones for a given specified ranking. The shaded region is the extinction area for the ranking under consideration.
Different rankings lead to different extinction areas. The larger the area the better the ranking.
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Declino di biodiversità e cascata di estinzioni

Ecological networks may be viewed as a set of species (nodes)
connected by interspecific interactions (competition,
predation, parasitism and mutualism), represented by the

links. Even though interaction strengths are largely unknown, the
architecture of the ecological interaction networks has been
thoroughly investigated, showing its important role in shaping
and regulating community dynamics and in structuring diversity
patterns1–8. Several studies recognized the strong impact of the
non-random structures of empirical interaction networks on both
the resilience (time to return to the steady state after a small
perturbation) and the persistence (number of coexisting species at
equilibrium) of ecological communities9–14, and much theoretical
effort has been made to understand the relationship between
stability and complexity in ecological communities, one of
the most debated issues in ecology15–18. In mutualistic
networks, where species beneficially interact with each other, a
core–periphery structure has been observed ubiquitously19. The
network core refers to a central and densely connected set of
nodes, while the periphery denotes a sparsely connected non-
central set of nodes, which are linked to the core. It has been
posited that the architecture of mutualistic networks minimizes
competition and increases biodiversity7, community stability
(resilience) and persistence20, but other studies have
demonstrated that structured mutualistic ecological networks
may be less stable than their random counterparts14,21. It has also
been shown that community stability decreases as community
size increases, and that this result holds even for more realistic
ecological interactions with a mixing of interaction types (‘hybrid
communities’)22. Most of the aforementioned studies focused
either on the resilience of the system—measured by the
maximum real part of the eigenvalues of the community
matrix14,15,21—or on the number of species that persist when
starting from non-stationary conditions7,8. However, both
approaches have important limitations. Indeed, the maximum
real part of the community matrix eigenvalues only describes
the rate of recovery from perturbations in the long time
limit, providing no information on the transient response.
Perturbations can grow significantly before decaying, possibly
impacting species’ fate (Fig. 1a). A system at its stable stationary
state that experiences such initial amplifications of the
perturbations is called reactive23,24. On the other hand,
persistence (measured as the fraction of initial species with
positive stationary population density16) is strongly sensitive to
initial conditions, the system’s distance from stationarity and the
choice of model and parameters8,25,26. To garner a better
understanding of the effect of perturbations on ecological

communities, one should also study how the components of the
leading eigenvectors (that is, the right and left eigenvectors
associated with the eigenvalue having the largest real part) are
distributed, that is, study the localization of the system. In
condensed matter physics, localization, also known as Anderson
localization27, is the absence of diffusion of waves in a disordered
medium, and it describes the ability of waves to propagate
through the system. Other approaches (for example, Markov
chain models28, or the inverse community matrix29) can be used
to study how disturbances propagate in species interaction
networks and what their effects are on other species (that is,
how many other species do they affect and what is the magnitude
of this effect). However, it has been shown that small variations in
the interaction strengths may lead to very different model
predictions30,31. Our theoretical framework may be considered as
a complementary methodology to gain information on the
general relation patterns between the interaction network
architecture and the ability of perturbations to propagate within
the system. Our goal in this work is to determine the degree of
localization of eigenvectors in mutualistic ecological networks as a
function of the network size, structure and interaction strengths,
and to study the impact of localization on the perturbation
amplitude and spreading within the system. Here we show that
localization may be a useful mechanism that impacts on the
stability of ecological networks. In fact, localization attenuates
(asymptotically) and reduces perturbation propagation through
the network. We find that mutualistic ecological networks are
indeed localized and localization patterns are correlated with
some network topological properties; in particular, heterogeneity
in the weighted species degrees promotes localization in the
network. Furthermore, the observed localization increases with
the size of the ecological communities, highlighting a trade-off
between the asymptotic resilience of the system and the
attenuation of perturbations.

Results
Theoretical framework. The mutualistic interactions of an
ecological community can be encoded in a bipartite binary graph
represented by its adjacency matrix B containing S nodes
(species) that are partitioned into two disjoint sets, one
containing the animals (insect pollinators), the other the plants.
Each of the L (undirected) edges connects two nodes, one in the
set of animals (of size A) and the other in the set of plants (of size
P), that is, Bkl¼ 1 if insect k and plant l interact. S¼Aþ P is the
total number of species in the community. We analyse 59
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Figure 1 | Propagation of the perturbation through the network. (a) Trajectory of a perturbation through time. Reactivity (lH) measures whether
perturbations grow before decaying; asymptotic resilience l1 indicates whether perturbations eventually decay; and the asymptotic perturbation amplitude
A1 describes the intensity of the perturbation for large time. The principal right eigenvector determines which species will be affected most by the
perturbation after its propagation, while the left principal eigenvector controls which species are the most sensitive to the initial perturbation. The weighted
degree heterogeneity affects the localization pattern in the network: (b) is a regular graph where each node is connected to six other nodes, while (c) is a
power-law scale-free graph2 of the same size and with similar connectance. In both cases, edge weights are randomly extracted from a Gamma distribution.
The size and the colour of the nodes indicate the absolute values of the corresponding component of the leading right eigenvector. In b, all species are
equally perturbed. In contrast, in c, only few species are affected.
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