

PMT analysis

- → Goals
 - Characterise PMT response to different sources
 - Correlate PMT signal in a single event
 - Correlate PMT signals with camera picture

♦ 3D tracking

Found the data

200

- Started to have a look at it.
- Some examples are shown

1200

1000

1400

Time [ns]

wfm, timestamp 1627567468_ch1_trig_7

PMT analysis - First steps

- Understand all the channels
 - There are 2 separate folders
 - But they seem the continuation of each other.
 - There are 8 channels and 9 triggers per image.
 - Suggestions?
- 2. Find baseline
 - Shift waveforms to zero
- 3. Find time correlation between signals
 - Is the PMT signal always at the same position? (trigger latency?)
 - Find trigger rate
- Start creating a TTree to save and organize all the relevant information

PMT analysis - Posterior analysis

- Basic properties of the waveforms:
 - a. Area
 - b. Baseline
 - c. Signal duration / time window
 - d. Maximum amplitude
 - e. Number of peaks per wf (number of energy depositions)
 - f. Number of minima above threshold
 - i. Large structure indicate cosmics
- Using the 4 PMTs to find the track position (X-Y):
 - a. <u>Time and/or amplitude triangulation</u>
- Correlation between images (clusters) and PMT signals.

PMT analysis - Negative Ion Drift - Ongoing work

- Working on a preliminary analysis of the PMT waveforms for NID.
 - Giorgio (will) show some of the late results...

We'll keep you updated!