Hyperparameters optimization

We want and can optimize:

- # of layers (2 to 6)
- # of neurons in each layer (from 32 to 512, step = 128)
- dropout in each layer (from 0 to 0.3, step = 0.1)
- optimizer (RMSprop or Adam)
- learning rate and learning rate decay

We don't want to optimize:

- activation function (*relu* in hidden layers, *sigmoid* in output layer)
- loss (binary cross entropy)

We want but can't optimize:

batch size

Learning rate decay

- Training neural networks with constant learning rates usually converges towards minima in a noisy manner and end up oscillating far away from actual minima
- Solution: decay the learning rate over time helps the network converge to a local minimum and avoid oscillation
 - 1. Exponential Decay: (one of several possible methods)

"
$$\alpha = (\text{decayRate}^{(\text{epochNumber})})^* \alpha 0$$
"

This function applies an exponential decay function to a provided initial learning rate so that learning rate decay over time, exponentially.

The decayRate of this method is always less then 1, 0.95 is most commonly used among practitioners.

Learning rate decay in Keras

```
initial_learning_rate = 0.1
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
   initial_learning_rate,
   decay_steps=100000,
   decay_rate=0.96,
   staircase=True)
```

Should we change only the initial learning rate?

Optimization logic

- We can define a maximum number of hyperparameters combination to test
- We can define the number of models that should be built and fit for each combination

Note: the purpose of having multiple executions per trial is to reduce results variance and therefore be able to more accurately assess the performance of a model. If you want to get results faster, you could set executions_per_trial=1 (single round of training for each model configuration).

- We can define the number of epochs for each trial
- How do we choose the best set of hyperparameters? What do we look at?