Hyperparameters optimization

We want and can optimize:

» # of layers (2 to 6)

* # of neurons in each layer (from 32 to
512, step = 128)

 dropout in each layer (from 0 to 0.3,
step =0.1)

* optimizer (RMSprop or Adam)

* |earning rate and learning rate decay

We don’t want to optimize:
* activation function (relu in hidden

layers, sigmoid in output layer)
* loss (binary cross entropy)

We want but can’t optimize:

* patch size



Learning rate decay

* Training neural networks with constant learning rates usually converges towards minima
in a noisy manner and end up oscillating far away from actual minima

« Solution: decay the learning rate over time helps the network converge to a local minimum
and avoid oscillation

1. Exponential Decay : (one of several possible methods)

“ a = ( decayRate*(epochNumber) ) *aO “

This function applies an exponential decay function to a provided initial

learning rate so that learning rate decay over time , exponentially.

The decayRate of this method is always less then 1, 0.95 is most commonly

used among practitioners.



Learning rate decay in Keras

initial_learning_rate = 0.1
Lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,

decay_steps=100000,
decay_rate=0.96,
staircase-True)

Should we change only the initial learning rate?



Optimization logic

* We can define a maximum number of hyperparameters combination to test

 We can define the number of models that should be built and fit for each combination

Note: the purpose of having multiple executions per trial is to reduce results variance and
therefore be able to more accurately assess the performance of a model. If you want to get
results faster, you could set executions_per_trial=1 (single round of training for each model
configuration).

* We can define the number of epochs for each trial

 How do we choose the best set of hyperparameters? What do we look at?



	Slide 9
	Slide 10
	Slide 11
	Slide 12

