

Terrestrial Gamma Ray Flahes at the Pierre Auger Observatory

Martin Schimassek for the Pierre Auger Collaboration

The Pierre Auger Observatory

Karlsruhe Institute of Technology

- largest cosmic ray observatory in the world
- covers 3000 km² in Argentina
- hybrid detector approach

Pierre Auger Observatory Province Mendoza, Argentina

Auger – Hybrid Detector

- Surface Detectors (SDs) deployed in triangular grid with 1.5 km spacing
- Fluorescence Detectors (FDs) in 4 sites

Auger – Surface Detector

17 km

triangular grid with 1.5 km spacing

Cosmic Rays – the usual events

- short signals in SDs
 - order of 5 μs in length
- steeply falling lateral distribution
- randomly distributed in time with constant rate

Lightning Events – the usual 'exotics'

- high-frequency signals in many stations
 - usually visible across the whole recorded trace of 19.2 μs
 - RF pick-up in cables as cause
- footprints very variable but can be large
- usually clustered in time from repeated discharges

The true Exotics – TGFs?

- very large signals
 - often longer than the recorded trace
- footprints variable but typically large and round
 - some events: hole in the centre
 - some completely filled
- indications of repeated events

Are those real signals?

- different channels agree
 - cables with different orientation and length should have different pick-up, if it's only RFnoise
- all PMTs agree
 - different cables not symmetric
- large signals from particles within thunderstorms
 - TA has downwards TGFs (DOI: 10.1029/2019JD031940), these are similar

The Trigger Chain

Usual Trigger Rates:

- 0.05 Hz
- background T2s:
 - ~ 30 / ms

TGFs? – Current Limitations

- example event for representation
- DAQ optimised for UHE-CRs
 - event rate of about 0.05 Hz
 - about 4 triggers per CR event
 - ~1000 triggers for these events
- lightning strikes lead to many triggers and lost data

TGFs? – Current Limitations

What did we learn about the ring structure?

- careful re-analysis of data of previous events
- information available in other events close in time
- also information on 'lost' data can be valuable

- long-signal stations
- * lightning stations
- × muon stations
- overshoot stations
- lost overshoot
- ★ center of the footprint

What did we learn about the ring structure?

What did we learn about the ring structure?

Current Limitations – Reading out the Event

- DAQ optimised for UHE-CRs
- later events lost due to memory limitations of (old) hardware

How to move forward?

Station

- full trace information
- limited CPU time

Communication

- 4 bits for trigger type
- only 2 in use

CDAS

- trigger bits only
- triggers from all stations

Station – New Algorithm

Idea:

- make use of full trace to send new trigger flag
- but needs simple algorithm

Concept

- build representative sample of traces
- test algorithm on recorded data

PoS(ICRC2021) 395

Station – New Algorithm

Idea:

- make use of full trace to send
- but needs simple algorithm

Concept

- build representative sample of traces
- test algorithm on recorded data
- labeled traces!

Concept of the Algorithm

Idea:

- integration of high frequency noise ~ 0
- integrating small but long signal increases signal to noise (w.r.t single bin)

needs

19

- choice of window length
- baseline ...?

Concept of the Algorithm

Idea – 2:

- differences of integrals are independent of baseline
- windows can be placed to optimise S/N
- threshold to be defined on test-sample

$$S_i = \sum_{j=a_i}^{b_i} t(j)$$
 $\sum_{i=2}^{3} |S_i - S_1| > x_{\text{thr}}$

Choice of the windows

- make use of known trigger bin
- 'ending long-signals'
- we want to be insensitive to muons / small showers
 - → we reach ~75% efficiency! (first estimate: <1 / 5h of lighting false pos.)

New Possibilities? – Auger Prime!

HORIZONTAL (60-90°)

- Hardware changes
 - additional scintillators
 - new electronics
 - a small PMT
 - radio antennas
 - underground muon counters
 - enhanced duty cycle of FD

VERTICAL (0-60°)

slide by R. Engel

Summary and Conclusion

- re-analysis of existing data shows interesting facts about TGF-candidates
- Auger 'SD-rings' are actually filled
- main reason for reduced event rate identified
- new software trigger in the field to enhance efficiency

Martin Schimassek - TGFs at Auger?

Backup

Backup

Auger – Hybrid Detector

Current Status – Deployment

Karlsruhe Institute of Technology

- production of SSDs finished
- deployment with 5-10 SSDs / day
 - almost finished
 - no deployment in border region
- production of electronics well progressing
- deployment of electronics well underway (~280 deployed)

