

Measurement of aerosols above the Pierre Auger Observatory using the side-scattered light from the laser of the Aeolus satellite

AtmoHEAD workshop 2022

Felix Knapp for the Pierre Auger Collaboration

The Surface Detector

Only particles in SD, Here no laser is visible

- Array of 1660 tanks, each filled with 12t of water
- Charged shower particles create Cherenkov light in water, Measured with photomultiplier tubes

The Fluorescence Detector

- Four stations with six telescopes each, fov: 30° × 30° → 180° total per station
- Measurement of (Fluorescence + Cherenkov) light

The Fluorescence Detector

- Four stations with six telescopes each, fov: 30° × 30° → 180° total per station
- Measurement of (Fluorescence + Cherenkov) light
- Telescope:
 - Light enters window, hits 10m² spherical mirror
 - Focussing towards camera
 - 440 pixel, PMTs as light sensors
 - Arranged in hexagonal pattern
 - Shower (or laser beam) seen as track of activated pixels

Atmospheric Monitoring in the Pierre Auger Observatory

- Good knowledge of atmosphere is crucial
- Laser facilities (CLF and XLF)
 - 355nm-Laser in center of the Observatory
 - Laser shots from ground upwards, scattered light measured in Fluorescence Detector
 - measurements taken regularly during FD-measurements
 - \rightarrow Attenuation of light gives info about aerosols
- Also lidar systems at each FD-station, weather stations, ...

The Aeolus Satellite

- ESA-satellite for wind profile measurements
- Equipped with UV-lidar (λ =355nm), emitted under 35° to nadir

AtmoHEAD 2022

Constant of the state of the st

The Aeolus Satellite

- ESA-satellite for wind profile measurements
- Equipped with UV-lidar (λ=355nm), emitted under 35° to nadir
- Additionaly: Secondary beam at 55° (internal reflection of main beam)
 - \rightarrow Aeolus laser like a "moving" CLF

The Aeolus Laser in the Pierre Auger Observatory

15th July 2022

The Aeolus Laser in the Pierre Auger Observatory

Only visible from May to August

15th July 2022

Laser Geometry reconstruction with the FD

Geometry reconstruction:
 1. Fit Shower Detector Plane

2. Get remaining geometry from timing information

15th July 2022

AtmoHEAD 2022

 $\chi_0 - \chi_i$

ground detector

Laser Geometry reconstruction with the FD

- Geometry reconstruction:
 - 1. Fit Shower Detector Plane
 - 2. Get remaining geometry from timing information
- Improved for
 - Hybrid events (+SD) \rightarrow additional time of SD (not for laser shots)
 - Stereo events (\geq 2 Telescopes) \rightarrow intersection of 2 SDPs

Monocular reconstruction with fixed angles

high Laser frequency (~50Hz), Detector dead time

Only few stereo events

Need mono events for analysis

Improvement of mono reconstruction:

- Take all stereo events
- Reconstruct arrival direction from stereo events
- Fix arrival direction in mono reconstruction

Reconstructed impact points of one transition

14/24

New position of the Main Beam track after July 2021

15th July 2022

Laser Position – Aeolus vs. Auger

Plot by Isabell Krisch (DLR)

Laser-Telescope-Distance

\rightarrow use measurement of the same laser from many different distances for aerosol determination

15th July 2022

Parametric Aerosol Model

- Express aerosol content with model
 - Constant concentration within mixing layer
 - Exponential decay above mixing layer
- Model is described by three parameters
 - Attenuation length at ground level L
 - Height of mixing layer H_{mix}
 - Scale Height S of exponential decay above mixing layer

Likelihood fit of aerosol parameters

- Energy and L, H_{mix} , S as free parameters in likelihood fit
- With known geometry: calculate expected photons at telescope for E, L, H_{mix}, S
- Comparison with measurement
- Sum over all events gives one Likelihood for whole transition

Scan in two dimensions

Next step: minimization algorithm

- Desired: Scan with all parameters instead of only two
- e.g. 4-dimensional scan with 50 values each: N(E) x N(L) x N(H_{mix}) x N(S) x 800 Events = 5 · 10⁹ calculations of Likelihood → inefficient

Summary

- Aeolus: satellite emitting UV laser shots, visible in FD for few nights per year
- Geometry of laser shots can be reconstructed from the FD data

Summary

- Aeolus: satellite emitting UV laser shots, visible in FD for few nights per year
- Geometry of laser shots can be reconstructed from the FD data
- Laser is seen from many distances within few seconds \rightarrow leverage on aerosol content of atmosphere
- Energy and aerosol parameters are obtained by likelihood fit to one complete laser transition

Outlook

- Perform Likelihood fit in four dimensions with Minuit
- Test fit algorithm with simulations
 - Simulate laser transition with certain E, L, H_{mix} , S
 - How well are these parameters fitted?
- Comparison of fitted aerosol parameters to CLF-measurement
 → systematic cross check with different method
- Other uses of laser data:
 - test of horizontal uniformity
 - test of relative calibration of telescopes
- Launch of EarthCARE satellite in 2023(?) with similar lidar instrument

Backup Slides

Here also only one event

Likelihood fit bias in simulation studies

15th July 2022

Laser energy over time

15th July 2022

Example: measured event with cloud

