

# The CTA-North Performance in Conditions of Reduced Atmospheric Transmission

#### Mario Pecimotika

Department of Physics, University of Rijeka, Rijeka, Croatia Virovitica University of Applied Sciences, Virovitica, Croatia

Dijana Dominis Prester, Dario Hrupec, Saša Mićanović, Lovro Pavletić, Julian Sitarek

AtmoHEAD - July 13, 2022





- the Cherenkov yield in the air shower is dependent on the refractive index of the air
- the loss of Cherenkov may be introduced by absorption and scattering, both by molecules (Rayleigh scattering) and aerosols (Mie scattering)
- the presence of clouds reduces the number of Cherenkov photons recorded by the Cherenkov camera which may introduce a bias towards lower energies, reduced sensitivity, and misconstructed spectra

## Simulation and analysis chain



# air shower development and Cherenkov light emission



## **Simulation chain**



COsmic Ray SImulations for Kascade (CORSIKA) code version 7.6400
study was performed for Northern CTA site (La Palma, Spain)





From: www.cta-observatory.org

- 20 degrees in Zenith, 180 degrees in Azimuth
- atmospheric transmission → within sim\_telarray code





- MODerate resolution atmospheric TRANsmission (MODTRAN) code version 5.2.2
- US Standard Atmosphere, desert extinction
- wavelength range: from 200 nm to 1000 nm
- ground altitude at the observatory level (2147 m a.s.l.)
- I km thick clouds at 3, 5, and 7 km a.g.l.
- simulated transmissions: 1.00, 0.75, and 0.50

## Analysis chain



- Convert Hessio to MARS Input (chimp)
  - Signal extraction
  - Calibration
  - Image parametrization
- MAGIC Analysis and Reconstruction Software (MARS)
  - Direction → direction look-up table
  - Energy and gamma-hadron separation → Random Forest
- Final output:
  - Angular resolution
  - Differential sensitivity
  - Effective Area
  - Energy resolution

Same kind of Monte Carlo simulations used for training and test sample!







varies from 0.18 deg to 0.22 deg at the energy of ≈ 40 GeV to
0.06 deg at the energy of 1 TeV, depending on the properties of
clouds, reaching a plateau of ≈ 0.05 above 1 TeV

#### **Effective Area**





• severely reduced below  $\approx 250$  GeV, up to 60% depending on the properties of clouds; above a few hundreds of GeV reduction is 20% in the presence of clouds with T = 0.50

#### **Differential Sensitivity**





- the most visible effect of clouds is at energies  $\leq$  150 GeV
- at energies  $\geq$  1 TeV the stability in reduction is achieved:  $\approx$  25% for T = 0.50, and  $\approx$  10% in the case of T = 0.75







• varies between 0.18 and 0.24 in the lowest energy bin to  $\approx$  0.10 at the energy of 15; significantly degraded at energies below 250 GeV, by 30% for T = 0.50 and by less then 10% for T = 0.75





- the influence of different transmissions and altitudes of clouds on the performance of CTA-N
- less transparent clouds → more severe effect on the performance, while the differences between close altitudes are small
- the reduction in sensitivity does not cross 50% above a few hundreds of GeV, except at the energy threshold where the impact is much more severe
- at the same energies, the reduction of angular resolution, energy resolution, and effective area are below 20%



This work has been supported by the University of Rijeka grant **uniriprirod-18-48**, University of Rijeka Foundation grant **N-PROM 9/2022** and Narodowe Centrum Nauki grant number **2019/34/E/ST9/00224**. Simulations have been performed using the supercomputer Bura within the Center for Advanced Computing and Modelling, University of Rijeka.

Contact:

mario.pecimotika@cta-consortium.org